精英家教网 > 高中数学 > 题目详情
已知函数f(x)=3x且f-1(18)=a+2,g(x)=3ax-4x定义域为[-1,1].
(1)求g(x)的解析式;
(2)判断g(x)的单调性;
(3)若g(x)=m有解,求m的取值范围.
分析:(1)先由函数f(x)=3x且f-1(18)=a+2解出3a的值,整体代入g(x)=3ax-4x中得到g(x)=2x-4x,
(2)对g(x)=2x-4x求导,用导数判断函数在[-1,1]上的单调性;
(3)令m属于g(x)的值域,可保证g(x)=m有解,故求m的范围的过程可转化为求g(x)的值域.
解答:解:(1)由函数f(x)=3x且f-1(18)=a+2可得3a+2=18,故9×3a=18,得3a=2
又g(x)=3ax-4x=(3ax-4x=2x-4x
故g(x)=2x-4x,x∈[-1,1].
(2)∵g'(x)=ln2×2x-4是一增函数,
又x∈[-1,1],故可得g'(1)=ln2×2-4<0
∴g(x)=2x-4x,在[-1,1]上是减函数.
(3)由(2)知函数在[-1,1]上是减函数.
故-2≤g(x)≤
9
2

∵g(x)=m有解,
故m的取值范围是[-2,
9
2
]
点评:本题的考点是指数函数单调性的应用,考查运用指数函数的单调性求值域,本题把求m的范围的问题可转化为求g(x)的值域,在求解数学问题时,合理的正确的转化是求解成功的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=3•2x-1,则当x∈N时,数列{f(n+1)-f(n)}(  )
A、是等比数列B、是等差数列C、从第2项起是等比数列D、是常数列

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-x
+
1
x+2
的定义域为集合A,B={x丨m<x-m<9}.
(1)若m=0,求A∩B,A∪B;
(2)若A∩B=B,求所有满足条件的m的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-x
+
1
x+2
的定义域为集合A,B={x|x<a}.
(1)若A⊆B,求实数a的取值范围;
(2)若全集U={x|x≤4},a=-1,求?UA及A∩(?UB).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-ax
a-1
(a≠1)在区间(0,4]上是增函数,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3-2log2x,g(x)=log2x.
(1)当x∈[1,4]时,求函数h(x)=[f(x)+1]•g(x)的值域;
(2)如果对任意的x∈[1,4],不等式f(x2)•f(
x
)>k•g(x)
恒成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案