精英家教网 > 高中数学 > 题目详情
已知函数f(x)=·,其中=(sinωx+cosωx,cosωx), =(cosωx-sinωx,2sinωx)(ω>0).若f(x)相邻两对称轴间的距离不小于.

(1)求ω的取值范围;

(2)在△ABC中,a、b、c分别是角A、B、C的对边,a=,b+c=3(b>c),当ω最大时,f(A)=1,求边b,c的长.

分析:(1)应先求出f(x)的解析式,相邻两对称轴间的距离为,从而可得出ω的不等式.(2)由ω的范围得出ω的最大值,确定f(x)的解析式.由f(A)=1求出A的值,再利用余弦定理得出a、b、c的关系.

解:(1)f(x)= ·=cos2ωx-sin2ωx+2sinωxcosωx=cos2ωx+sin2ωx

=2sin(2ωx+).

∵f(x)相邻两对称轴间的距离不小于,∴

∴0<ω≤1.

(2)当ω最大时,ω=1,∴f(x)=2sin(2x+),

∵f(A)=1,∴2sin(2A+)=1,又<2A+π,∴2A+=π,∴A=.

    在△ABC中,3=b2+c2-2bccos,∴b2+c2-bc=3,又b+c=3,(b>c)∴b=2,c=1

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)

求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,则a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定义域上的递减函数,则实数a的取值范围是(  )
A、(
1
3
,1)
B、(
1
3
1
2
]
C、(
1
3
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|x-1|-a
1-x2
是奇函数.则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-2-x2x+2-x

(1)求f(x)的定义域与值域;
(2)判断f(x)的奇偶性并证明;
(3)研究f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-1x+a
+ln(x+1)
,其中实数a≠1.
(1)若a=2,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)若f(x)在x=1处取得极值,试讨论f(x)的单调性.

查看答案和解析>>

同步练习册答案