精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,圆的参数方程为为参数),在以原点为极点,轴的非负半轴为极轴建立的极坐标系中,直线的极坐标方程为.

1)求圆的普通方程和直线的直角坐标方程;

2)设直线轴,轴分别交于两点,点是圆上任一点,求面积的最小值.

【答案】1;(24.

【解析】

1)运用同角的平方关系可得圆的普通方程;运用两角和的余弦公式和直角坐标和极坐标的关系,即可得到所求直线的直角坐标方程;

2)求得直线轴的交点,利用两点间距离公式求得;设点的坐标为,运用点到直线的距离公式,以及两角和的余弦公式,运用余弦函数的值域,即可得到所求面积的最小值.

解:(1)由消去参数,得

所以圆的普通方程为.

,得

所以直线的直角坐标方程为.

2)由(1)可得直线轴,轴的交点为

点的坐标为,则点到直线的距离为

取最小值,

所以面积的最小值是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】201913日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日点的轨道运行.点是平衡点,位于地月连线的延长线上.设地球质量为M,月球质量为M,地月距离为R点到月球的距离为r,根据牛顿运动定律和万有引力定律,r满足方程:

.

,由于的值很小,因此在近似计算中,则r的近似值为

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),上的动点,点满足,点的轨迹为曲线

(1)求曲线的直角坐标方程;

(2)在以为极点,轴的正半轴为极轴的极坐标系中,射线的异于极点的交点为,与的异于极点的交点为,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,都是边长为2的正三角形,平面平面平面.

1)证明:直线平面

2)求直线与平面所成的角的大小;

3)求平面与平面所成的二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如下图,在四棱锥中,的中点。

(1)求证:

(2)线段上是否存在一点,满足?若存在,试求出二面角的余弦值;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在三棱锥中, 是等腰直角三角形,且

平面

(Ⅰ)求证:平面平面

(Ⅱ)若的中点,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图(1),在平面四边形ABCD中,ACBD的垂直平分线,垂足为EAB中点为F,沿BD折起,使C位置,如图(2.

1)求证:

2)当平面平面ABD时,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知三棱柱,平面平面,分别是的中点.

(1)证明:

(2)求直线与平面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足:对于任意正整数n,当n≥2时,

(1)若,求的值;

(2)若,且数列的各项均为正数.

① 求数列的通项公式;

② 是否存在,且,使得为数列中的项?若存在,求出所有满足条件的的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案