【题目】在平面直角坐标系中,圆的参数方程为为参数),在以原点为极点,轴的非负半轴为极轴建立的极坐标系中,直线的极坐标方程为.
(1)求圆的普通方程和直线的直角坐标方程;
(2)设直线与轴,轴分别交于两点,点是圆上任一点,求面积的最小值.
科目:高中数学 来源: 题型:
【题目】2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日点的轨道运行.点是平衡点,位于地月连线的延长线上.设地球质量为M1,月球质量为M2,地月距离为R,点到月球的距离为r,根据牛顿运动定律和万有引力定律,r满足方程:
.
设,由于的值很小,因此在近似计算中,则r的近似值为
A. B.
C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数),为上的动点,点满足,点的轨迹为曲线.
(1)求曲线的直角坐标方程;
(2)在以为极点,轴的正半轴为极轴的极坐标系中,射线与的异于极点的交点为,与的异于极点的交点为,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,与都是边长为2的正三角形,平面平面,平面,.
(1)证明:直线平面
(2)求直线与平面所成的角的大小;
(3)求平面与平面所成的二面角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如下图,在四棱锥中,面,,,,,,,为的中点。
(1)求证:面;
(2)线段上是否存在一点,满足?若存在,试求出二面角的余弦值;若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图(1),在平面四边形ABCD中,AC是BD的垂直平分线,垂足为E,AB中点为F,,,,沿BD将折起,使C至位置,如图(2).
(1)求证:;
(2)当平面平面ABD时,求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列,满足:对于任意正整数n,当n≥2时,.
(1)若,求的值;
(2)若,,且数列的各项均为正数.
① 求数列的通项公式;
② 是否存在,且,使得为数列中的项?若存在,求出所有满足条件的的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com