精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)的值域是[-2,3],则函数f(x-2)的值域为(  )
A.[-4,1]B.[0,5]C.[-4,1]∪[0,5]D.[-2,3]

分析 先根据已知条件利用函数的图象的变换,得出答案.

解答 解:∵函数y=f(x-2)的图象由函数y=f(x)的图象平移得到,
∴函数y=f(x)的值域与函数y=f(x+t)的值域向同,为[-2,3],
故选:D.

点评 本题主要考查了学生对函数的值域以及函数图象的变换的理解和应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.过正四面体ABCD的高DH作一平面,与正四面体的三个侧面相交得到三条直线DX,DY,DZ,这三条直线与正四面体的底面所成角分别为$\alpha$,$\beta$,$\gamma$.求证:tan2α+tan2β+tan2γ=12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知an=($\frac{1}{3}$)n,把数列{an}的各项排列成如下的三角形状:记A(m,n)表示第m行的第n个数,则A(11,2)(  )
A.($\frac{1}{3}$)67B.($\frac{1}{3}$)68C.($\frac{1}{3}$)101D.($\frac{1}{3}$)102

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ex,g(x)=x2-ax+1.
(Ⅰ)若函数y=f(x)+g(x)在区间[1,+∞)上单调递增,求实数a的取值范围;
(Ⅱ) 记h(x)=$\frac{f(x)}{g(x)}$,若$a∈[{0,\frac{1}{2}}]$,则当x∈[0,a+1]时,函数h(x)的图象是否总在不等式y>x所表示的平面区域内,请写出判断过程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图已知:AB是⊙O的直径,C是半圆上的一点,CD⊥AB于D,⊙N与⊙O内切且与AB,CD分别切于E,F,求证:AC=AE.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知正三棱锥S-ABC的底面边长为a,各侧面的顶角为30°,D为侧棱SC的中点,截面△DEF过D且平行于AB,当△DEF周长最小时,则截得的三棱锥S-DEF的侧面积为$\frac{2+\sqrt{3}}{32}{a}^{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.正三棱锥P-ABC中,有一半球,某底面所在的平面与正三棱锥的底面所在平面重合,正三棱锥的三个侧面都与半球相切,如果半球的半径为2,则当正三棱锥的体积最小时,正三棱锥的高等于2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图所示,已知P是边长为a的菱形ABCD所在平面外一点,∠ABC=60°,PC⊥平面ABCD,PC=a,E为PA的中点.
(1)求证:平面EDB⊥平面ABCD;
(2)求二面角A-EB-D的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在正方体ABCD-A1B1C1D1中,过AB、AD、DD1的中点P、Q、R作截面,求截面与面CC1D1D所成的二面角的大小.

查看答案和解析>>

同步练习册答案