精英家教网 > 高中数学 > 题目详情

【题目】已知双曲线的左,右焦点分别为,点P为双曲线C右支上异于顶点的一点,的内切圆与x轴切于点,且直线经过线段的中点且垂直于线段,则双曲线C的方程为________________.

【答案】

【解析】

设点是双曲线右支上一点,由双曲线的定义,知,设三角形的内切圆与轴的切点为分别为内切圆与的切点,由同一点向圆引得两条切线相等知,由此得到,再利用直线经过线段的中点且垂直于线段,设,运用直线的斜率公式和中点在直线上,化简整理得,再利用双曲线的定义,得,进而得到双曲线方程.

是双曲线右支上一点,由双曲线的定义,知,若设三角形的内切圆与轴的切点为分别为内切圆与的切点,

由同一点向圆引得两条切线相等知,且

则有

所以,即

再设,则的中点坐标为

由直线经过线段的中点且垂直于线段

所以有,整理得,即

所以,又

所以,在双曲线中,

故双曲线方程为.

故答案为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

讨论的单调性;

恒成立,求实数a的取值范围;

时,设为自然对数的底若正实数满足,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C1y=cos xC2y=sin (2x+),则下面结论正确的是( )

A. C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2

B. C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2

C. C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2

D. C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司生产的某批产品的销售量万件(生产量与销售量相等)与促销费用万元满足(其中为正常数).已知生产该产品还需投入成本万元(不含促销费用),产品的销售价格定为件.

1)将该产品的利润万元表示为促销费用万元的函数;

2)促销费用投入多少万元时,该公司的利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)试判断函数的单调性;

2)是否存在实数,使函数的极值大于?若存在,求的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年辽宁省正式实施高考改革.新高考模式下,学生将根据自己的兴趣、爱好、学科特长和高校提供的“选考科目要求”进行选课.这样学生既能尊重自己爱好、特长做好生涯规划,又能发挥学科优势,进而在高考中获得更好的成绩和实现自己的理想.考改实施后,学生将在高二年级将面临着的选课模式,其中“3”是指语、数、外三科必学内容,“1”是指在物理和历史中选择一科学习,“2”是指在化学、生物、地理、政治四科中任选两科学习.某校为了更好的了解学生对“1”的选课情况,学校抽取了部分学生对选课意愿进行调查,依据调查结果制作出如下两个等高堆积条形图:根据这两幅图中的信息,下列哪个统计结论是不正确的(

A.样本中的女生数量多于男生数量

B.样本中有学物理意愿的学生数量多于有学历史意愿的学生数量

C.样本中的男生偏爱物理

D.样本中的女生偏爱历史

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是两条不同直线,是两个不同平面,给出下列四个命题:

①若垂直于同一平面,则平行;

②若平行于同一平面,则平行;

③若不平行,则在内不存在与平行的直线;

④若不平行,则不可能垂直于同一平面

其中真命题的个数为(  )

A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂因排污比较严重,决定着手整治,一个月时污染度为,整治后前四个月的污染度如下表:

月数

污染度

污染度为后,该工厂即停止整治,污染度又开始上升,现用下列三个函数模拟从整治后第一个月开始工厂的污染模式:,其中表示月数,分别表示污染度.

1)问选用哪个函数模拟比较合理,并说明理由;

2)若以比较合理的模拟函数预测,整治后有多少个月的污染度不超过

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题是真命题的是(

A.有两个面相互平行,其余各面都是平行四边形的多面体是棱柱

B.正四面体是四棱锥

C.有一个面是多边形,其余各面都是三角形的多面体叫做棱锥

D.正四棱柱是平行六面体

查看答案和解析>>

同步练习册答案