精英家教网 > 高中数学 > 题目详情
1.某工厂将生产的某种芯片的质量按测试指标划分为五组(指标数值越大.产品质量越好),现随机抽取芯片50件进行检测.检测结果统计如下:
 组号 测试指标 频数 频率
 第一组[80,84] 8 0.16
 第二组[84,88] x 0.24
 第三组[88,92] 15 p
 第四组[92,96] 10 q
 第五组[96,100] y 0.1
 合          计 50 1
(1)试确定x,y,p.q的值,并补全频率分布直方图;
(2)为了挑选最优质的芯片,工厂决定在第三、四、五组中用分层抽样法抽取6件产品进行第二次检测,最终决定选用2件产品,求2件产品中至少有1件来自第四组的概率.

分析 (1)根据频率、频数与样本容量的关系,求出x、y与p、q的值,并补全频率分布直方图;
(2)根据第三、四、五组的频数求出抽取6件产品各组应抽取的产品数,编号后利用列举法求出基本事件数,再求出对应的概率.

解答 解:(1)根据题意,x=50×0.24=12,
y=50×0.1=5,
p=$\frac{15}{50}$=0.3,
q=$\frac{10}{50}$=0.2;
补全频率分布直方图如下;
(2)第三、四、五组的频数分别为15、10和5,
用分层抽样法抽取6件产品,第三组抽3件,记为a、b、c,
第四组抽取2件,记为D、E,第五组抽取1件,记为f;
从这6件中选2件,基本事件是
ab、ac、aD、aE、af、bc、bD、bE、bf、cD、cE、cf、DE、Df、Ef共15种,
2件产品中至少有1件来自第四组的基本事件是
aD、aE、bD、bE、cD、cE、DE、Df、Ef共9种;
所以所求的概率为P=$\frac{9}{15}$=0.6.

点评 本题考查了频率分布直方图的应用问题,也考查了分层抽样方法与列举法求古典概型的概率问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.直线3x+4y+4=0与圆C:x2+y2-2x-4y+a=0有两交点A,B.
(1)写出圆C的标准方程;
(2)若△ABC是正三角形,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,三个内角A,B,C所对的边分别为a,b,c,且满足$\frac{acosB+bcosA}{c}$=2cosC.
(1)求角C的大小;
(2)若△ABC的面积为2$\sqrt{3}$,a+b=6,求边c的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数y=Asin(ωx+φ)(A>0,ω>0,0<φ<π)在一个周期内的图象如图,此函数的解析式为y=2sin(2x+$\frac{2π}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知抛物线c:y2=2px,直线1:y=x-2与抛物C交于点A,B,与x轴交于点M.
(1)若抛物线焦点坐标为($\frac{1}{4}$,0),求抛物线C的方程及弦AB的中点坐标;
(2)直线y=2x与抛物线C交于异于原点的点P,MP交抛物线C于另一点Q,求证:无论P如何变化,点Q始终在一条定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,一根长为2米的竹竿AB斜靠在在直角墙壁上,假设竹竿在同一平面内移动,当竹竿的下段点A从距离墙角O点1米的地方移动到$\sqrt{3}$米的地方,则AB的中点D经过的路程为$\frac{π}{6}$米.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知两点M(0,2),N(-3,6)到直线l的距离分别为1和3,则满足条件的直线l的条数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=lnx+$\frac{a}{x}$(a>0).
(Ⅰ)求函数f(x)在[1,+∞)上的最小值;
(Ⅱ)若存在三个不同的实数xi(i=1,2,3)满足f(x)=ax.
(i)证明:?a∈(0,1),f($\frac{{a}^{2}}{2}$)>$\frac{{a}^{3}}{2}$;
(ii)求实数a的取值范围及x1•x2•x3的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知z∈C,若A=$\frac{{z}^{2}-{z}^{-2}}{2i}$,B=z•$\overline{z}$,则A和B之间的大小关系是设z=a+bi,当${a}^{2}<\frac{1}{2}$时,A>B;当a2=$\frac{1}{2}$时,A=B;当${a}^{2}>\frac{1}{2}$时,A<B.

查看答案和解析>>

同步练习册答案