精英家教网 > 高中数学 > 题目详情
9.在△ABC中,a,b,c分别为内角A,B,C所对的边,且满足2acosC=2b-$\sqrt{3}$c.
(1)求A的大小;
(2)现给出三个条件:①a=2; ②B=45°;③c=$\sqrt{3}$b.试从中选出两个可以确定△ABC的条件,写出你的选择并以此为依据求△ABC的面积 (只需写出一个选定方案即可,选多种方案以第一种方案记分).

分析 (1)利用正弦定理,三角形内角和定理,两角和的正弦函数公式化简已知可得2cosAsinC=$\sqrt{3}$sinC,结合sinC>0,可得cosA=$\frac{\sqrt{3}}{2}$,结合A的范围即可得解A的值.
(2)方案一:选择①②,由正弦定理可求b,利用两角和的正弦函数公式可求sinC,利用三角形面积公式即可计算得解;方案二:选择①③,由余弦定理则可求b,c的值,利用三角形面积公式即可得解.若选择②③,可求sinC=$\sqrt{3}$sinB=$\frac{\sqrt{6}}{2}$>1不成立,这样的三角形不存.

解答 解:(1)∵2acosC=2b-$\sqrt{3}$c.
∴2sinAcosC=2sinB-$\sqrt{3}$sinC,
∴2sinAcosC=2sinAcosC+2cosAsinC-$\sqrt{3}$sinC,可得:2cosAsinC=$\sqrt{3}$sinC.
∵sinC>0,
∴可得:cosA=$\frac{\sqrt{3}}{2}$,
∵A∈(0,π),
∴A=$\frac{π}{6}$.
(2)方案一:选择①②
由正弦定理$\frac{a}{sinA}=\frac{b}{sinB}$,得b=$\frac{asinB}{sinA}$=2$\sqrt{2}$,
∴sinC=sin(A+B)=sinAcosB+cosAsinB=$\frac{\sqrt{2}+\sqrt{6}}{4}$.
∴S=$\frac{1}{2}$absinC=$\frac{1}{2}×2×2\sqrt{2}×$$\frac{\sqrt{2}+\sqrt{6}}{4}$=$\sqrt{3}+1$
方案二:选择①③
由余弦定理b2+c2-2bccosA=a2,有b2+3b2-3b2=4,则b=2,c=2$\sqrt{3}$,
所以S=$\frac{1}{2}$bcsinA=$\frac{1}{2}×2×2\sqrt{3}×\frac{1}{2}$=$\sqrt{3}$.
说明:若选择②③,由c=$\sqrt{3}b$得,sinC=$\sqrt{3}$sinB=$\frac{\sqrt{6}}{2}$>1不成立,这样的三角形不存.

点评 本题主要考查了正弦定理,三角形内角和定理,两角和的正弦函数公式,三角形面积公式,余弦定理,正弦函数的图象和性质在解三角形中的应用,考查了计算能力和转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知条件p:$\frac{4}{x-1}$≤-1,条件q:x2+x<a2-a,且p是q的一个必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设命题p:函数f(x)=lg(x2+ax+1)的定义域为R;命题q:函数f(x)=x2-2ax-1在(-∞,-1]上单调递减.若命题“p∨q”为真,“p∧q”为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在平面直角坐标系xOy中,以原点为极点,x轴正半轴为极轴建立极坐标系.已知曲线C的极坐标方程是ρcosθ+ρsinθ=1,曲线D的参数方程是:$\left\{\begin{array}{l}{x=2-cosα}\\{y=sinα}\end{array}\right.$(α为参数).
(1)求曲线C与曲线D的直角坐标方程;
(2)若曲线C与曲线D相交于A、B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知直线l的极坐标方程为ρsin(θ+$\frac{π}{4}$)=$\sqrt{2}$.
(1)在极坐标系下写出θ=0和θ=$\frac{π}{2}$时该直线上的两点的极坐标,并画出该直线;
(2)已知Q是曲线ρ=1上的任意一点,求点Q到直线l的最短距离及此时Q的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数f(x)=sin(ωx+φ)(ω>0,-π<φ<0)的两个相邻的对称中心分别为(${\frac{π}{8}$,0),(${\frac{5π}{8}$,0).
(Ⅰ)求f(x)的解析式及其对称轴方程;
(Ⅱ)利用五点法画出函数f(x)在[$\frac{π}{8}$,$\frac{9π}{8}}$]上的简图.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知变量x,y满足约束条件$\left\{\begin{array}{l}x+y≥2\\ x-y≤2\\ 0≤y≤3\end{array}\right.$,若目标函数z=y-ax仅在点(5,3)处取得最小值,则实数a的取值范围为(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某校教职工年龄结构分布如表,为了该校未来的发展,学校决定从这些教职工中采用分层抽样方法随机抽取50人参与“教代会”,则应从35岁以下教职工中抽取的人数为(  )
年龄(岁)35岁及以下(35,50)50岁以上
人数(人)220180100
A.22B.18C.10D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知集合A={x|$\frac{1}{2}$≤2x≤4},B={x|lg(x-1)≤1},则A∩B=(1,2].

查看答案和解析>>

同步练习册答案