函数y=sin(cosx)的值域为( )
A.[-1,1]
B.[sin1,1]
C.[0,sin1]
D.[-sin1,sin1]
【答案】
分析:首先确定函数y=sin(cosx)为复合函数,内函数cosx的值域为外函数y=sinx的定义域.然后求出cosx的值域,代入y=sinx即可求出函数y=sin(cosx)的值域.
解答:解:∵函数y=sin(cosx),
而cosx∈[-1,1]
∴函数y=sinX在定义域[
]里单调递增,
∴函数y=sin(cosx)的值域为:[-sin1,sin1]
故选:D
点评:本题考查复合函数的值域问题,涉及正弦函数的定义域以及值域,余弦函数的定义域以及值域问题,通过对复合函数的理解,分别求出余弦函数的值域以及正弦函数的值域即可解题,属于基础题.