精英家教网 > 高中数学 > 题目详情
18.设A,B,C三个集合,为使A?(B∪C),条件A?B是(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 根据充分必要条件的定义,分别判断充分性和必要性即可.

解答 解:若条件A?B,
则A?(B∪C)是充分条件,
若A?(B∪C),推不出条件A?B,不是必要条件,
故选:A.

点评 本题考查了充分必要条件,考查集合的关系,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.若f(x)在R上为减函数,且f(-x)=-f(x),f(m-1)+f(2m-1)>0,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.分别写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假.
(1)若q<1,则方程x2+2x+q=0有实根.
(2)若ab=0,则a=0或b=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.化简:
(1)$\root{3}{{a}^{\frac{7}{2}}\sqrt{{a}^{-3}}}$÷$\sqrt{\root{3}{{a}^{-8}}\root{3}{{a}^{15}}}$÷$\root{3}{\sqrt{{a}^{-3}}\sqrt{{a}^{-1}}}$;
(2)$\frac{{a}^{\frac{4}{3}}-8{a}^{\frac{1}{3}}b}{4{b}^{\frac{2}{3}}+2\root{3}{ab}+{a}^{\frac{2}{3}}}$÷(1-2$\root{3}{\frac{b}{a}}$)×$\root{3}{a}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若正实数a、b、c满足a(3a+4b+2c)=4-$\frac{8}{3}$bc,则3a+2b+c的最小值为(  )
A.4B.4$\sqrt{3}$C.$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设二次函数f(x)=ax2+bx+c满足f(x+1)-f(x)=2x-1,且f(0)=-1,求a、b、c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知x,y满足约束条件$\left\{\begin{array}{l}x-y-1≤0\\ 2x-y-3≥0\end{array}\right.$,当目标函数z=ax+by(a>0,b>0)在该约束条件下取到最小值$2\sqrt{5}$时,ab的最大值为$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列四个命题中正确的是(  )
A.两个单位向量一定相等
B.若$\overrightarrow a$与$\overrightarrow b$不共线,则$\overrightarrow a$与$\overrightarrow b$都是非零向量
C.共线的单位向量必相等
D.两个相等的向量的起点、方向、长度必须相同

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.对于函数f(x)=asinx-bx+c(其中a,b∈R,c∈Z),选取a,b,c的一组值计算f(2)与f(-2),所得出的正确结果一定不可能是(  )
A.f(2)=4,f(-2)=6B.f(2)=3,f(-2)=1C.f(2)=1,f(-2)=2D.f(2)=2,f(-2)=4

查看答案和解析>>

同步练习册答案