精英家教网 > 高中数学 > 题目详情
(2012•马鞍山二模)如图,在正三棱柱ABC一DEF中,AB=2,AD=1,P是CF的延长线上一点,过A、B、P三点的平面交FD于M,交EF于N.
(I)求证:MN∥平面CDE:
(II)当平面PAB⊥平面CDE时,求三梭台MNF-ABC的体积.
分析:(Ⅰ)根据正三棱柱的性质,平面与平面平行的性质定理,可得AB∥MN,结合DE∥AB得到DE∥MN,最后用线面平行的判定定理,可证出MN∥平面CDE.
(II)取AB中点G、DE中点H,连接PG、CH,利用线面平行的性质结合面面垂直的性质,可得PG⊥CH,再由平面几何知识得Rt△PCG∽Rt△HGC,算出PF=2,进而得到FM=
4
3
且△PMN是等边三角形,最后利用两个三棱锥体积相减即可得到三梭台MNF-ABC的体积.
解答:解:(Ⅰ)∵正三棱柱ABC一DEF中,平面ABC∥平面DEF,平面PAB∩平面DEF=MN,平面PAB∩平面ABC=AB,
所以AB∥MN;…(2分)
又∵平行四边形ABED中,DE∥AB,∴DE∥MN,; …(4分)
∵MN?平面CDE,DE⊆平面CDE,
∴MN∥平面CDE…(6分)
(Ⅱ)取AB中点G、DE中点H,连接PG、CH,则
由GH∥PC知P、C、G、H在同一平面上,并且由PA=PB知PG⊥AB,
类似于(Ⅰ)的证明方法可得AB平行于平面PAB与平面CDE的交线,
因此PG也垂直于该交线,
由此可得,若平面PAB⊥平面CDE,则PG⊥平面CDE,可得PG⊥CH
根据平面几何知识,得Rt△PCG∽Rt△HGC,所以
PC
CG
=
PC
GH
…(8分)
设PF=t,则
1+t
3
=
3
1
,可得t=2…(10分)
从而
MF
AC
=
PF
PC
,得到MF=
4
3

∴VNMF-ABC=VP-ABC-VP-MNF=
1
3
×
3
4
[22×3-(
4
3
2×2]=
19
3
27
…(13分)
点评:本题在一个正三棱柱中探索面面垂直问题,并求截出三棱台的体积,着重考查了线面位置关系、台体体积求法等有关知识,考查学生空间想象能力,属于中等题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•马鞍山二模)设同时满足条件:①
bn+bn+2
2
bn+1
;②bn≤M(n∈N+,M是与n无关的常数)的无穷数列{bn}叫“嘉文”数列.已知数列{an}的前n项和Sn满足:Sn=
a
a-1
(an-1)
(a为常数,且a≠0,a≠1).
(1)求{an}的通项公式;
(2)设bn=
2Sn
an
+1
,若数列{bn}为等比数列,求a的值,并证明此时{
1
bn
}
为“嘉文”数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•马鞍山二模)现对某市工薪阶层关于“楼市限购政策”的态度进行调查,随机抽查了50人,他们月收入(单位:百元)的频数分布及对“楼市限购政策”赞成人数如下表:
月收入(单位百元) [15,25) [25,35) [35,45) [45,55) [55,65) [65,75)
频数 5 10 15 10 5 5
赞成人数 4 8 12 5 2 1
(Ⅰ)根据以上统计数据填写下面2×2列联表,并回答是否有99%的把握认为月收入以5500元为分界点对“楼市限购政策”的态度有差异?
月收入不低于55百元的人数 月收入低于55百元的人数 合计
赞成 a= b=
不赞成 c= d=
合计
(Ⅱ)若从月收入在[55,65)的被调查对象中随机选取两人进行调查,求至少有一人不赞成“楼市限购政策”的概率.
(参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d.)
参考值表:
P(k2≥k0 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•马鞍山二模)已知椭圆C1
x2
m+2
+
y2
n
=1
与双曲线C2
x2
m
-
y2
n
=1
共焦点,则椭圆C1的离心率e的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•马鞍山二模)己知在锐角△ABC中,角A,B,C所对的边分别为a、b、c,向量
m
=(a2+b2-c2,ab),
n
=(sinC,-cosC),且
m
n

(I)求角C的大小;
(II)当c=1时,求a2+b2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•马鞍山二模)设x1,x2是关于x的方程x2+mx+
1+m2
=0的两个不相等的实数根,那么过两点A(x1x12)B(x2x22)的直线与圆x2+y2=2的位置关系是(  )

查看答案和解析>>

同步练习册答案