精英家教网 > 高中数学 > 题目详情
9.高二数学ICTS竞赛初赛考试后,某校对95分以上的成绩进行统计,其频率分布直方图如图所示,其中[135,145]分数段的人数为2人.
(1)求这组数据的平均数M;
(2)现根据初赛成绩从第一组和第五组(从低分段到高分段依次为第一组、第二组、…、第五组)中任意选出两人,形成帮扶学习小组.若选出的两人成绩之差大于20分,则称这两人为“黄金搭档组”,试求选出的两人为“黄金搭档组”的概率.

分析 (1)由频率分布直方图能求出这组数据的平均数.
(2)先求出总人数为40,第一组人数为4人,第五组有2人,设第一组4人分别为a,b,c,d,第五组2人为A,B,利用列举法能求出选出的两人为“黄金搭档组”的概率.

解答 解:(1)由频率分布直方图知:
这组数据的平均数M=100×0.1+110×0.25+120×0.45+130×0.15+140×0.05=118.…(4分)
(2)总人数为$\frac{2}{0.005*10}=40$;…(5分)
第一组人数为:0.01×10×40=4人,第五组有2人,
事件S:选出的两人为“黄金搭挡”,
设第一组4人分别为a,b,c,d,第五组2人为A,B,
从6人中抽2人,有如下基本事件:
(a,b),(a,c),(a,d),(a,A),(a,B),(b,c),(b,d),(b,A),(b,B),
(c,d),(c,A),(c,B),(d,A),(d,B),(A,B),
共15个基本事件.…(9分)
事件S含有基本事件:
(a,A),(a,B),(b,A),(b,B),(c,A),
(c,B),(d,A),(d,B)共8个基本事件.…(10分)
∴选出的两人为“黄金搭档组”的概率P(S)=$\frac{8}{15}$.…(12分)

点评 本题考查频率分布直方图的应用,考查概率的求法,是基础题,解题时要认真审题,考查运用统计知识解决简单实际问题的能力,数据处理能力和运用意识.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.在平面内的动点(x,y)满足不等式$\left\{\begin{array}{l}{x+y-3≤0}\\{x-y+1≥0}\end{array}\right.$,则z=2x+y的取值范围是(  )
A.(-∞,+∞)B.(-∞,4]C.[4,+∞)D.[-2,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,四棱锥P-ABCD中,平面PAD⊥平面ABCD,△PAD是正三角形,底面ABCD是直角梯形,AB∥CD,CD⊥AD,CD=2AB=2AD=2,M为PC的中点.
(Ⅰ)求证:BM∥平面PAD;
(Ⅱ)求证:直线BM⊥平面PDC;
(Ⅲ)求直线PD与平面BDM所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,矩形ABCD中,$AB=2\sqrt{2}$,$AD=\sqrt{2}$,M为DC的中点,将△DAM沿AM折到△D′AM的位置,AD′⊥BM.
(1)求证:平面D′AM⊥平面ABCM;
(2)若E为D′B的中点,求三棱锥A-D′EM的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某校从高二年级学生中随机抽取50名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100],得到如图所示的频率分布直方图.
(1)若该校高二年级共有学生1000人,试估计成绩不低于60分的人数;
(2)求该校高二年级全体学生期中考试成绩的众数、中位数和平均数的估计值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列函数在区间[0,+∞)上是增函数的是(  )
①y=2x ②y=x2+2x-1 ③y=|x+2|④y=|x|+2.
A.①②B.①③C.②③④D.①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}的前n项和Sn=$\frac{{n}^{2}+3n}{4}$,n∈N*
(1)求数列{an}的通项公式;
(2)设bn=(n+1)4${\;}^{{a}_{n}}$-$\frac{1}{4{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.极坐标系与直角坐标系xOy有相同的长度单位,以原点为极点,以x轴正半轴为极轴,曲线C1的极坐标方程为ρ=4sinθ,曲线C2的参数方程为$\left\{{\begin{array}{l}{x=m+tcosα}\\{y=tsinα}\end{array}}\right.$(t为参数,0≤α<π),射线$θ=φ,θ=φ+\frac{π}{4},θ=φ-\frac{π}{4}$与曲线C1交于(不包括极点O)三点A,B,C.
(1)求证:$|{OB}|+|{OC}|=\sqrt{2}|{OA}|$;
(2)当$φ=\frac{5π}{12}$时,B,C两点在曲线C2上,求m与α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知二次函数f(x)=ax2-4bx+2.
(Ⅰ)任取a∈{1,2,3},b∈{-1,1,2,3,4},记“f(x)在区间[1,+∞)上是增函数”为事件A,求A发生的概率;
(Ⅱ)任取(a,b)∈{(a,b)|a+4b-6≤0,a>0,b>0},记“关于x的方程f(x)=0有一个大于1的根和一个小于1的根”为事件B,求B发生的概率.

查看答案和解析>>

同步练习册答案