精英家教网 > 高中数学 > 题目详情
12.如图,椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)和抛物线C2:y2=2px(p>0)都经过点M($\frac{2}{3}$,$\frac{2\sqrt{6}}{3}$),且椭圆C1的右焦点和抛物线C2的焦点F2相同.
(1)求C1,C2的方程;
(2)过F2作斜率为k的直线l和抛物线C2相交于A,B两点,直线l和椭圆C1相交于C,D两点,如图,当△CDF1的面积和△ABO的面积相等时,求斜率k的值.

分析 (1)点M($\frac{2}{3}$,$\frac{2\sqrt{6}}{3}$)代入抛物线C2:y2=2px,求出p,可得抛物线的方程,利用椭圆的定义,可得椭圆的方程;
(2)设直线方程为x=my+1,与抛物线C2:y2=4x、椭圆C1:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1联立,利用△CDF1的面积和△ABO的面积相等,建立方程,求出m,即可求斜率k的值.

解答 解:(1)点M($\frac{2}{3}$,$\frac{2\sqrt{6}}{3}$)代入抛物线C2:y2=2px,可得($\frac{2\sqrt{6}}{3}$)2=2p×$\frac{2}{3}$,∴p=2,
∴抛物线C2:y2=4x,焦点F2(1,0),
|MF1|+|MF2|=$\sqrt{(\frac{5}{3})^{2}+(\frac{2\sqrt{6}}{3})^{2}}$+$\sqrt{(-\frac{1}{3})^{2}+(\frac{2\sqrt{6}}{3})^{2}}$=4=2a,
∴a=2,∴b=$\sqrt{3}$,
∴椭圆C1:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1;
(2)设直线方程为x=my+1,则
与抛物线C2:y2=4x联立,可得y2-4my-4=0,∴△ABO的面积=$\frac{1}{2}×1×\sqrt{16{m}^{2}+16}$=2$\sqrt{{m}^{2}+1}$,
与椭圆C1:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1联立,可得(3m2+4)y2+6my-9=0,
∴△CDF1的面积=$\frac{1}{2}×2×$$\sqrt{(-\frac{6m}{3{m}^{2}+4})^{2}+\frac{36}{3{m}^{2}+4}}$=$\sqrt{(-\frac{6m}{3{m}^{2}+4})^{2}+\frac{36}{3{m}^{2}+4}}$,
∴$\sqrt{(-\frac{6m}{3{m}^{2}+4})^{2}+\frac{36}{3{m}^{2}+4}}$=2$\sqrt{{m}^{2}+1}$,
∴m=±$\frac{\sqrt{6}}{3}$,
∴k=±$\frac{\sqrt{6}}{2}$.

点评 本题考查抛物线、椭圆的方程,考查直线与抛物线、椭圆的位置关系,考查面积的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知直线l1:x-2y-1=0,直线l2:ax-by+1=0,a,b∈{1,2,3,4},则直线l1与直线l2没有公共点的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{6}$C.$\frac{1}{8}$D.$\frac{3}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若h(x)=log3x的定义域为[1,9],不等式[h(x)+2]2≤h(x3)+m+2恒成立,则实数m的最小值为(  )
A.2B.8C.10D.11

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=(x+a)(x-b),若a,b∈{-2,-1,0,1,2},则f(x)为偶函数的概率为(  )
A.$\frac{1}{5}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知{an}为等差数列,a3=8,a9=20,求a13

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点F(-c,0)关于直线bx+cy=0的对称点P在椭圆上,则椭圆的离心率是(  )
A.$\frac{\sqrt{2}}{4}$B.$\frac{\sqrt{3}}{4}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知抛物线C:y2=2px(p>0)的焦点为F,抛物线上横坐标为$\frac{1}{2}$的点到抛物线顶点的距离与该点到抛物线准线的距离相等.
(1)求抛物线C的方程;
(2)设直线x-my-6=0与抛物线C交于A、B两点,若∠AFB=90°,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知空间非零向量$\overrightarrow{{s}_{1}}$,$\overrightarrow{{s}_{2}}$,则“cos<$\overrightarrow{{s}_{1}}$,$\overrightarrow{{s}_{2}}$>=$\frac{1}{2}$”是“$\overrightarrow{{s}_{1}}$与$\overrightarrow{{s}_{2}}$的夹角为$\frac{π}{3}$”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.将函数y=f(x)cosx的图象向左平移$\frac{π}{4}$个单位后,得到函数y=2cos2x-1的图象,则f(x)=(  )
A.2sinxB.2cosxC.-2sinxD.-2cosx

查看答案和解析>>

同步练习册答案