精英家教网 > 高中数学 > 题目详情
已知等比数列{an},则“a1<a2<a3”是“{an}为递增数列”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件
考点:必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:根据充分条件和必要条件的定义进行判断即可.
解答: 解:∵{an}是等比数列,∴若“a1<a2<a3”,
则“数列{an}是递增数列”,充分性成立,
若“数列{an}是递增数列”,则“a1<a2<a3”成立,即必要性成立,
故“a1<a2<a3”是“数列{an}是递增数列”的充要条件,
故选:C
点评:本题主要考查充分条件和必要条件的判断,根据等比数列的定义是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知两个非零向量
m
=(
3
sinωx,cosωx),
n
=(cosωx,cosωx),
(1)当ω=2,x∈(0,π)时,向量
m
n
共线,求x的值;
(2)若函数f(x)=
m
n
与直线y=
1
2
的任意两个交点间的距离为
π
2

①当f(
α
2
+
π
24
)=
1
2
+
2
6
,α∈(0,π),求cos2α的值;
②令g(x)=
sinx•cosx
sin
x
2
•cos
π
2
+1
,x∈[0,
π
2
],试求函数g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两个实数a,b(a≠b),满足aea=beb.命题p:lna+a=lnb+b;命题q:(a+1)(b+1)>0,则下列命题正确的是(  )
A、p真q假B、p假q真
C、p真q真D、p假q假

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2
sin2x-2
2
cos2x,则f(x)的最小正周期T和其图象的一条对称轴方程是(  )
A、2π,x=
π
8
B、2π,x=
8
C、π,x=
π
8
D、π,x=
8

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=lg(-x2+2x+3)的定义域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

“φ=
π
2
”是“函数f(x)=sin(
1
2
x+φ)为偶函数”的(  )
A、充分不必要条件
B、必要不充分条件
C、充分必要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:
2
x
<x;命题q:log2x2>1;则命题p是命题q的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不必要也不充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中,是偶函数的是(  )
A、f(x)=
1
x
B、f(x)=x
C、f(x)=x2
D、f(x)=x+x3

查看答案和解析>>

科目:高中数学 来源: 题型:

命题“?x∈R,x2-3x+2≥0”的否定是(  )
A、?x0∈R,x02-3x0+2<0
B、?x0∈R,x02-3x0+2≥0
C、?x0∉R,x02-3x0+2<0
D、?x0∈R,x02-3x0+2<0

查看答案和解析>>

同步练习册答案