精英家教网 > 高中数学 > 题目详情
13.如果向量$\overrightarrow{AA′}$=$\overrightarrow{a}$,$\overrightarrow{BB′}$=$\overrightarrow{b}$,那么$\overrightarrow{a}$=$\overrightarrow{b}$是四点A、A′、B、B′构成平行四边形的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要的条件

分析 根据相等向量的定义结合充分必要条件分别判断即可.

解答 解:若$\overrightarrow{a}$=$\overrightarrow{b}$,则四点A、A′、B、B′可能共线,不构成平行四边形,不是充分条件,
若四点A、A′、B、B′构成平行四边形,则$\overrightarrow{a}$,$\overrightarrow{b}$是相反向量,不是必要条件,
故选:D.

点评 本题考查了充分必要条件,考查向量问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.解下列关于x的方程:
(1)log2(2x+1)=log2(3x);
(2)log5(2x+1)=log5(x2-2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)已知椭圆:$\frac{{x}^{2}}{2}$+y2=1,设G,H为椭圆上两动点,OG⊥OH(O为坐标原点),求证:$\frac{1}{O{H}^{2}}$+$\frac{1}{O{G}^{2}}$为定值;
(2)在(1)条件下,是否存在以O为圆心的定圆,使其与GH相切,若存在,写出方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知向量$\overrightarrow{a}$=(sin2x,cos2x),$\overrightarrow{b}$=(2cos2$\frac{θ}{2}$-1,sinθ),且函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$在x=$\frac{2π}{3}$时取得最小值(其中0<θ<$\frac{π}{2}$)
(1)求θ的值;
(2)设α∈[$\frac{π}{2}$,π],β∈[0,$\frac{π}{2}$],f(α+$\frac{π}{6}$)=-$\frac{1}{3}$,f($\frac{β}{2}$-$\frac{7π}{12}$)=-$\frac{2\sqrt{2}}{3}$,求cos(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如果$\frac{π}{4}$<θ<$\frac{π}{2}$,则sinθ,cosθ,tanθ大小关系是cosθ<sinθ<tanθ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知f(x)是奇函数,且当x>0时,f(x)=2x+x,若函数g(x)=f(x)-log2a在[-2,2]上有零点,则a的取值范围是(  )
A.(2,64]B.[$\frac{1}{64}$,$\frac{1}{2}$]C.[$\frac{1}{64}$,$\frac{1}{2}$)∪(2,64]D.[$\frac{1}{64}$,$\frac{1}{2}$)∪{1}∪(2,64]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知平面上四个互异的A,B,C,D满足($\overrightarrow{AB}$-$\overrightarrow{AC}$)•(2$\overrightarrow{AD}$-$\overrightarrow{BD}$-$\overrightarrow{CD}$)=0,则△ABC的形状是(  )
A.等边三角形B.等腰三角形C.直角三角形D.斜三角形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知实数x,y满足$\left\{{\begin{array}{l}{x-y+5≥0}\\{x+y≥0}\\{x≤3}\end{array}}\right.$,则x-2y的最小值为-13,该不等式组所围成的区域的面积为30.25.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,已知a2=b2+bc+c2,则角A为(  )
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{2π}{3}$D.$\frac{π}{3}$或$\frac{2π}{3}$

查看答案和解析>>

同步练习册答案