精英家教网 > 高中数学 > 题目详情

【题目】某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为2,4,4.现从这10人中随机选出2人作为该组代表参加座谈会. (I)设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;
(II)设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列和数学期望.

【答案】解:( I)由已知得:

所以,事件A发生的概率为

(Ⅱ)随机变量X的所有可能取值为0,1,2;

计算

所以,随机变量X的分布列为

X

0

1

2

P

随机变量X的数学期望为


【解析】(I)由相互独立事件的概率计算公式求出事件A发生的概率;(Ⅱ)根据题意知随机变量X的所有可能取值,

计算对应的概率值,写出分布列,计算数学期望值.

【考点精析】关于本题考查的离散型随机变量及其分布列,需要了解在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】本题满分12分甲、乙两位学生参加数学竞赛培训现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次记录如下:

82 81 79 78 95 88 93 84

92 95 80 75 83 80 90 85

1用茎叶图表示这两组数据;

2现要从中选派一人参加数学竞赛从统计学的角度在平均数、方差或标准差中选两个分析你认为选派哪位学生参加合适?请说明理由

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3+bx2+cx+d的图象如图,则函数 的单调递减区间是(
A.(﹣∞,﹣2)
B.(﹣∞,1)
C.(﹣2,4)
D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角ABC的对边分别为abc.已知cosC

(1),求△ABC的面积;

(2)设向量,且,求sin(BA)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}满足an+1= (n∈N*),且a1=0, (Ⅰ)计算a2、a3、a4 , 并推测an的表达式;
(Ⅱ)请用数学归纳法证明你在(Ⅰ)中的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ax2﹣lnx﹣2.
(1)当a=1时,求曲线f(x)在点(1,f(1))处的切线方程;
(2)若a>0,求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一个6×6的表格中放3颗完全相同的白棋和3颗完全相同的黑棋,若这6颗棋子不在同一行也不在同一列上,则不同的放法有(
A.14400种
B.518400种
C.720种
D.20种

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:

收入x/万元

8.2

8.6

10.0

11.3

11.9

支出y/万元

6.2

7.5

8.0

8.5

9.8

根据上表可得回归直线方程x+,其中=0.76, ,据此估计,该社区一户居民年收入为15万元家庭的年支出为_____万元.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为了了解该校学生对于某项运动的爱好是否与性别有关,通过随机抽查110名学生,得到如下2×2的列联表:

喜欢该项运动

不喜欢该项运动

总计

40

20

60

20

30

50

总计

60

50

110

由公式K2= ,算得K2≈7.61
附表:

p(K2≥k0

0.025

0.01

0.005

k0

5.024

6.635

7.879

参照附表,以下结论正确是(
A.有99.5%以上的把握认为“爱好该项运动与性别有关”
B.有99.5%以上的把握认为“爱好该项运动与性别无关”
C.有99%以上的把握认为“爱好该项运动与性别有关”
D.有99%以上的把握认为“爱好该项运动与性别无关”

查看答案和解析>>

同步练习册答案