精英家教网 > 高中数学 > 题目详情

【题目】已知非零实数不全相等,则下列说法正确的个数是(

1)如果成等差数列,则能构成等差数列

2)如果成等差数列,则不可能构成等比数列

3)如果成等比数列,则能构成等比数列

4)如果成等比数列,则不可能构成等差数列

A.1B.2C.3D.4

【答案】C

【解析】

用列举法判断命题(1)(3),通过等比中项和等差中项的性质判断(2)(4)命题.

对(1)若,则不能够成等差数列,故(1)错误;

对(3)若,则成等比数列,故(3)正确;

对(2)若成等差数列,故可得

成等比,则

,与已知矛盾,∴,故(2)正确;

对(4),若成等比数列,故可得

,即,故(4)正确.

故正确的选项是(2)(3)(4.

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】工厂质检员从生产线上每半个小时抽取一件产品并对其某个质量指标进行检测,一共抽取了件产品,并得到如下统计表.该厂生产的产品在一年内所需的维护次数与指标有关,具体见下表.

质量指标

频数

一年内所需维护次数

(1)以每个区间的中点值作为每组指标的代表,用上述样本数据估计该厂产品的质量指标的平均值(保留两位小数);

(2)用分层抽样的方法从上述样本中先抽取件产品,再从件产品中随机抽取件产品,求这件产品的指标都在内的概率;

(3)已知该厂产品的维护费用为元/次,工厂现推出一项服务:若消费者在购买该厂产品时每件多加元,该产品即可一年内免费维护一次.将每件产品的购买支出和一年的维护支出之和称为消费费用.假设这件产品每件都购买该服务,或者每件都不购买该服务,就这两种情况分别计算每件产品的平均消费费用,并以此为决策依据,判断消费者在购买每件产品时是否值得购买这项维护服务?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )

A. 1盏 B. 3盏 C. 5盏 D. 9盏

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,.已知分别是的中点.沿折起,使的位置且二面角的大小是60°,连接,如图:

1)证明:平面平面

2)求平面与平面所成二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,给定个整点,其中.

(Ⅰ)当,从上面的个整点中任取两个不同的整点,求的所有可能值;

(Ⅱ)从上面个整点中任取个不同的整点,.

i)证明:存在互不相同的四个整点,满足,

ii)证明:存在互不相同的四个整点,满足,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十九世纪末,法国学者贝特朗在研究几何概型时提出了“贝特朗悖论”,即“在一个圆内任意选一条弦,这条弦的弦长长于这个圆的内接等边三角形边长的概率是多少?”贝特朗用“随机半径”、“随机端点”、“随机中点”三个合理的求解方法,但结果都不相同.该悖论的矛头直击概率概念本身,强烈地刺激了概率论基础的严格化.已知“随机端点”的方法如下:设A为圆O上一个定点,在圆周上随机取一点B,连接AB,所得弦长AB大于圆O的内接等边三角形边长的概率.则由“随机端点”求法所求得的概率为(  )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

若函数的最大值为3,求实数的值;

若当时,恒成立,求实数的取值范围;

是函数的两个零点,且,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,,沿中位线DE折起后,点A对应的位置为点P.

1)求证:平面平面DBCE

2)求证:平面平面PCE

3)求直线BP与平面PCE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017727日上映以来,《战狼2》的票房一路高歌猛进,并不断刷新华语电影票房纪录.825日官方宣布冲破53亿票房之后,根据外媒Worldwide Box Office给出的2017年周末全球票房最新排名,《战狼2》以8.151亿美元(约54.18亿元)的成绩成功杀入前五.通过收集并整理了《战狼2》上映前两周的票房(单位:亿元)数据,绘制出下面的条形图.根据该条形图,下列结论错误的是(

A.在《战狼2》上映前两周中,前四天票房逐日递增

B.在《战狼2》上映前两周中,日票房超过2亿元的共有12

C.在《战狼2》上映前两周中,85日,86日达到了票房的高峰期

D.在《战狼2》上映前两周中,前五日的票房平均数高于后五日的票房平均数

查看答案和解析>>

同步练习册答案