精英家教网 > 高中数学 > 题目详情
已知双曲线W:的左、右焦点分别为F1、F2,点N(0,b),右顶点是M,且,∠NMF2=120°.
(Ⅰ)求双曲线的方程;
(Ⅱ)过点Q(0,-2)的直线l交双曲线W的右支于A、B两个不同的点(B在A、Q之间),若点H(7,0)在以线段AB为直径的圆的外部,试求△AQH与△BQH面积之比λ的取值范围.
【答案】分析:(Ⅰ)由已知M(a,0),N(b,0),F2(c,0),=(-a,b)•(c-a,0)=a2-ac=-1,由∠NMF2=120°,知∠NMF1=60°,故b=,c=,由此能求出双曲线的方程.
(Ⅱ)直线l的斜率存在且不为0,设直线l:y=kx-2,设A(x1,y1),B(x2,y2),由,得(3-k2)x2+4kx-7=0,由此入手,能够求出的取值范围.
解答:解:(Ⅰ)由已知M(a,0),N(b,0),F2(c,0),=(-a,b)•(c-a,0)=a2-ac=-1,
∵∠NMF2=120°,则∠NMF1=60°,
∴b=,∴c=
解得a=1,b=,∴双曲线的方程为.(4分)
(Ⅱ)直线l的斜率存在且不为0,设直线l:y=kx-2,设A(x1,y1),B(x2,y2),
,得(3-k2)x2+4kx-7=0,

解得.     ①(6分)
∵点H(7,0)在以线段AB为直径的圆的外部,则

=(1+k2)x1x2-(7+2k)(x1+x2)+53
=(1+k2)•-(7+2k)•+53
=>0,解得k>2.  ②
由①、②得实数k的范围是2<k<,(8分)
由已知
∵B在A、Q之间,则,且λ>1,
∴(x1,y1+2)=λ(x2,y2+2),则x1=λx2

=,(10分)
∵2<k<,∴4<,解得,又λ>1,
∴1<λ<7.
故λ的取值范围是(1,7).(13分)
点评:考查双曲线标准方程,简单几何性质,直线与双曲线的位置关系等基础知识.考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.培养学生的抽象概括能力、推理论证能力、运算求解能力和创新意识.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线W:
x2
a2
-
y2
b2
=′1 (a>0,b>0)
的左、右焦点分别为F1、F2,点N(0,b),右顶点是M,且
MN
MF2
=-1
,∠NMF2=120°.
(Ⅰ)求双曲线的方程;
(Ⅱ)过点Q(0,-2)的直线l交双曲线W的右支于A、B两个不同的点(B在A、Q之间),若点H(7,0)在以线段AB为直径的圆的外部,试求△AQH与△BQH面积之比λ的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江西省高三4月模拟考试理科数学试卷(解析版) 题型:解答题

已知双曲线W的左、右焦点分别为,点,右顶点是M,且

(Ⅰ)求双曲线的方程;

(Ⅱ)过点的直线l交双曲线W的右支于AB两个不同的点(BAQ之间),若点在以线段AB为直径的圆的外部,试求△AQH与△BQH面积之比λ的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年四川省资阳市高三第二次高考模拟考试理科数学试卷 题型:解答题

已知双曲线W的左、右焦点分别为,点,右顶点是M,且

(Ⅰ)求双曲线的方程;

(Ⅱ)过点的直线l交双曲线W的右支于AB两个不同的点(BAQ之间),若点在以线段AB为直径的圆的外部,试求△AQH与△BQH面积之比λ的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2012年福建省漳州五中高考数学模拟试卷(理科)(解析版) 题型:解答题

已知双曲线W:的左、右焦点分别为F1、F2,点N(0,b),右顶点是M,且,∠NMF2=120°.
(Ⅰ)求双曲线的方程;
(Ⅱ)过点Q(0,-2)的直线l交双曲线W的右支于A、B两个不同的点(B在A、Q之间),若点H(7,0)在以线段AB为直径的圆的外部,试求△AQH与△BQH面积之比λ的取值范围.

查看答案和解析>>

同步练习册答案