精英家教网 > 高中数学 > 题目详情

【题目】已知动圆与圆 相切,且与圆 相内切,记圆心的轨迹为曲线.设为曲线上的一个不在轴上的动点, 为坐标原点,过点的平行线交曲线, 两个不同的点.

(Ⅰ)求曲线的方程;

(Ⅱ)试探究的比值能否为一个常数?若能,求出这个常数,若不能,请说明理由;

(Ⅲ)记的面积为 的面积为,令,求的最大值.

【答案】(1)圆心的轨迹

2的比值为一个常数,这个常数为

3)当时, 取最大值.

【解析】试题分析:(1)根据两圆相切得圆心距与半径之间关系: ,消去半径得,符合椭圆定义,由定义可得轨迹方程(2)探究问题,实质是计算问题,即利用坐标求的比值:根据直线方程与椭圆方程联立方程组,利用两点间距离公式及韦达定理、弦长公式可得的表达式,两式相比即得比值3)因为的面积的面积,所以,利用原点到直线距离得三角形的高,而底为弦长MN2中已求),可得面积表达式,为一个分式函数,结合变量分离法(整体代换)、基本不等式求最值

试题解析:解:(1)设圆心的坐标为,半径为

由于动圆一圆相切,且与圆相内切,所以动圆与圆只能内切

圆心的轨迹为以为焦点的椭圆,其中

故圆心的轨迹

2)设,直线,则直线

可得:

可得:

的比值为一个常数,这个常数为

3的面积的面积,

到直线的距离

1

,则

(当且仅当,即,亦即时取等号)

时, 取最大值1

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在D上的函数,若存在区间[m,n]D及正实数k,使函数f(x)在[m,n]上的值域恰为[km,kn],则称函数f(x)是k型函数.给出下列说法:
①f(x)=3﹣ 不可能是k型函数;
②若函数f(x)= (a≠0)是1型函数,则n﹣m的最大值为
③若函数f(x)=﹣ x2+x是3型函数,则m=﹣4,n=0.
其中正确说法个数为(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】潮州统计局就某地居民的月收入调查了人,并根据所得数据画了样本的频率分

布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在)。

(1)求居民月收入在的频率;

(2)根据频率分布直方图算出样本数据的中位数;

(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这人中分层抽样方法抽出人作进一步分析,则月收入在的这段应抽多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形与梯形所在的平面互相垂直, 的中点, 中点.

1)求证:平面∥平面

2)求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】由数列中的项构成新数列,…,,…是首项为1,公比为的等比数列.

(1)数列的通项公式;

(2)求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(x+ )+cosx,x∈R,
(1)求函数f(x)的最大值,并写出当f(x)取得最大值时x的取值集合;
(2)若α∈(0, ),f(α+ )= ,求f(2α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】先后抛掷两枚大小相同的骰子.

1)求点数之和出现7点的概率;
2)求出现两个6点的概率;

(3)求点数之和能被3整除的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a、b、c分别是∠A、∠B、∠C的对边长,已知a、b、c成等比数列,且a2﹣c2=ac﹣bc,
(1)求∠A的大小;
(2)求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设直线与抛物线相交于不同两点,与圆相切于点,且为线段中点

(1)是正三角形(是坐标原点),求此三角形的边长;

(2) 若,求直线的方程

(3)进行讨论,请你写出符合条件的直线(直接写出结论).

查看答案和解析>>

同步练习册答案