【题目】已知动圆与圆: 相切,且与圆: 相内切,记圆心的轨迹为曲线.设为曲线上的一个不在轴上的动点, 为坐标原点,过点作的平行线交曲线于, 两个不同的点.
(Ⅰ)求曲线的方程;
(Ⅱ)试探究和的比值能否为一个常数?若能,求出这个常数,若不能,请说明理由;
(Ⅲ)记的面积为, 的面积为,令,求的最大值.
【答案】(1)圆心的轨迹: ;
(2)和的比值为一个常数,这个常数为;
(3)当时, 取最大值.
【解析】试题分析:(1)根据两圆相切得圆心距与半径之间关系: ,消去半径得,符合椭圆定义,由定义可得轨迹方程(2)探究问题,实质是计算问题,即利用坐标求和的比值:根据直线方程与椭圆方程联立方程组,利用两点间距离公式及韦达定理、弦长公式可得和的表达式,两式相比即得比值(3)因为的面积的面积,所以,利用原点到直线距离得三角形的高,而底为弦长MN(2中已求),可得面积表达式,为一个分式函数,结合变量分离法(整体代换)、基本不等式求最值
试题解析:解:(1)设圆心的坐标为,半径为,
由于动圆一圆相切,且与圆相内切,所以动圆与圆只能内切
∴
∴圆心的轨迹为以为焦点的椭圆,其中,
∴
故圆心的轨迹.
(2)设,直线,则直线,
由可得: ,∴,
∴
由可得: ,
∴,
∴
.
∴
∴和的比值为一个常数,这个常数为.
(3)∵,∴的面积的面积,∴,
∵到直线的距离,
∴.1
令,则, ,
∵(当且仅当,即,亦即时取等号)
∴当时, 取最大值.1
科目:高中数学 来源: 题型:
【题目】已知函数f(x)是定义在D上的函数,若存在区间[m,n]D及正实数k,使函数f(x)在[m,n]上的值域恰为[km,kn],则称函数f(x)是k型函数.给出下列说法:
①f(x)=3﹣ 不可能是k型函数;
②若函数f(x)= (a≠0)是1型函数,则n﹣m的最大值为 ;
③若函数f(x)=﹣ x2+x是3型函数,则m=﹣4,n=0.
其中正确说法个数为( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】潮州统计局就某地居民的月收入调查了人,并根据所得数据画了样本的频率分
布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在)。
(1)求居民月收入在的频率;
(2)根据频率分布直方图算出样本数据的中位数;
(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这人中分层抽样方法抽出人作进一步分析,则月收入在的这段应抽多少人?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sin(x+ )+cosx,x∈R,
(1)求函数f(x)的最大值,并写出当f(x)取得最大值时x的取值集合;
(2)若α∈(0, ),f(α+ )= ,求f(2α)的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,a、b、c分别是∠A、∠B、∠C的对边长,已知a、b、c成等比数列,且a2﹣c2=ac﹣bc,
(1)求∠A的大小;
(2)求 的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设直线与抛物线相交于不同两点、,与圆相切于点,且为线段中点.
(1) 若是正三角形(是坐标原点),求此三角形的边长;
(2) 若,求直线的方程;
(3) 试对进行讨论,请你写出符合条件的直线的条数(直接写出结论).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com