精英家教网 > 高中数学 > 题目详情

中,角对边分别是,且满足
(Ⅰ)求角的大小;(Ⅱ)若的面积为;求

(Ⅰ);(Ⅱ).

解析试题分析:(Ⅰ)由余弦定理确定得到, 根据角的范围,即得.
解题的关键是对余弦定理得熟练掌握及数学式子的变形能力.
(Ⅱ)根据三角形面积、余弦定理,建立的方程组,求得.
试题解析:(Ⅰ)由余弦定理得
          2分
代入,     4分
,∵,∴      6分
(Ⅱ)      8分
   10.
解得:      12分
考点:三角形面积公式,余弦定理的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

,函数满足
(Ⅰ)求的单调递减区间;
(Ⅱ)设锐角△的内角所对的边分别为,且, 求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,设角A,B,C的对边分别为a,b,c,且
(1)求角A的大小;
(2)若,求边c的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的最小值及单调减区间;
(2)在中,分别是角的对边,且,且,求,c的值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

钓鱼岛及其附属岛屿是中国固有领土,如图:点A、B、C分别表示钓鱼岛、南小岛、黄尾屿,点C在点A的北偏东47°方向,点B在点C的南偏西36°方向,点B在点A的南偏东79°方向,且A、B两点的距离约为3海里.

(1)求A、C两点间的距离;(精确到0.01)
(2)某一时刻,我国一渔船在A点处因故障抛锚发出求救信号.一艘R国舰艇正从点C正东10海里的点P处以18海里/小时的速度接近渔船,其航线为PCA(直线行进),而我东海某渔政船正位于点A南偏西60°方向20海里的点Q处,收到信号后赶往救助,其航线为先向正北航行8海里至点M处,再折向点A直线航行,航速为22海里/小时.渔政船能否先于R国舰艇赶到进行救助?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,海上有两个小岛相距10,船O将保持观望A岛和B岛所成的视角为,现从船O上派下一只小艇沿方向驶至处进行作业,且.设

(1)用分别表示,并求出的取值范围;
(2)晚上小艇在处发出一道强烈的光线照射A岛,B岛至光线的距离为,求BD的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,分别为内角A,B,C所对的边长,.
(1)求角B的大小。
(2)若的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,游客在景点处下山至处有两条路径.一条是从沿直道步行到,另一条是先从沿索道乘缆车到,然后从沿直道步行到.现有甲、乙两位游客从处下山,甲沿匀速步行,速度为.在甲出发后,乙从乘缆车到,在处停留后,再从匀速步行到.假设缆车匀速直线运动的速度为,索道长为,经测量.

(1)求山路的长;
(2)假设乙先到,为使乙在处等待甲的时间不超过分钟,乙步行的速度应控制在什么范围内?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,a=3,b=2,∠B=2∠A.
(1)求cos A的值;
(2)求c的值.

查看答案和解析>>

同步练习册答案