精英家教网 > 高中数学 > 题目详情
(2011•温州二模)已知实数x,y满足
y≥1, 
x+y≤2, 
y≤2x+m,
且z=x+2y,若z的最小值的取值范围为[0,2],则z的最大值的取值范围是(  )
分析:由目标函数z=x+2y的最小值的取值范围为[0,2],我们可以画出满足条件
y≥1
x+y≤2
的可行域,根据目标函数的解析式形式,分析取得最优解的点的坐标,然后根据分析列出一个含参数m的方程组,消参后即可得到m的取值,然后求出此目标函数的最大值的取值范围即可.
解答:解:画出x,y满足的可行域如下图:
①令z=0,可得直线x+2y=0与直线y=1的交点B,使目标函数x+2y取得最小值,
由 
x+2y=0
y=1
,得B(-2,1)
代入y=2x+m得m=5,
由 
x+y=2
y=2x+5
,得N(-1,3)
可得直线z=x+2y过点N时,使目标函数x+2y取得最大值,最大值为:5.
②令z=2,可得直线x+2y=2与直线y=1的交点A,使目标函数x+2y取得最小值,
由 
x+2y=2
y=1
,得A(0,1)
代入y=2x+m得m=1,
由 
x+y=2
y=2x+1
,得M(
1
3
5
3

可得直线z=x+2y过点M时,使目标函数x+2y取得最大值,最大值为:
11
3

则z的最大值的取值范围是[
11
3
,5].
故选B.
点评:本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.借助于平面区域特性,用几何方法处理代数问题,体现了数形结合思想、化归思想.线性规划中的最优解,通常是利用平移直线法确定.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•温州二模)某程序框图如图所示,则该程序运行后输出的S的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•温州二模)下列函数中,在(0,1)上有零点的函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•温州二模)已知定义在R上的函数y=f(x)为奇函数,且y=f(x+1)为偶函数,f(1)=1,则f(3)+f(4)=
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•温州二模)已知F是椭圆
x2
a2
+
y2
b2
=1
(a>0,b>0)的左焦点,若椭圆上存在点P,使得直线PF与圆x2+y2=b2相切,当直线PF的倾斜角为
3
,则此椭圆的离心率是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•温州二模)函数f(x)=
1
3
x3-
1
2
ax2+
2
27
x+1
的极值点是x1,x2,函数g(x)=x-alnx的极值点是x0,若x0+x1+x2<2.
(I )求实数a的取值范围;
(II)若存在实数a,使得对?x3,x4∈[1,m],不等式f(x3)≤g(x4)恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案