精英家教网 > 高中数学 > 题目详情
(2012•河北模拟)某中学对高二甲、乙两个同类班级进行“加强‘语文阅读理解’训练的提高”数学应题“得分率”的试验,其中甲班为试验班(加强语文阅读理解训练〕,乙班为对比班(常规教学,无额外训练).在试验前的测试中,甲、乙两班学生在数学应用题上的得分率基本一致.试验结束后,统计几次数学应用题测试的平均成绩(均取整放)如下表所示:
61分以下 (61,70](分) (71,80](分) (81,90](分) (91,100](分)
甲班(人数) 3 6 11 18 12
乙班(人数) 4 8 13 15 10
现规定平均成绩在80分以上(不含80分)的为优秀
(Ⅰ)试分别估计两个班级的优秀率:
(Ⅱ)用以上统计数据填写下面2X2列联表,并问是否有75%的把握认为.加强“语史阅读理解”训练对提高“数学应题”得分率有帮助?
优秀人数 非优秀人数 总计
甲班
30
30
20
20
50
50
乙班
25
25
25
25
50
50
总计
55
55
45
45
100
100
参考个公式K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d
参考数据:
P(K2≥k0 0.40 0.25 0.10 0.010
k0 0.708 1.323 2.706 6.635
分析:(1)根据所给的表格,看出两个班的所有的人数和两个班优秀的人数,分别用两个班优秀的人数除以总人数,得到两个班的优秀率.
(2)根据所给的数据列出列联表,做出观测值,把观测值同临界值进行比较,得到由参考数据知,没有75%的把握认为“加强‘语文阅读理解’训练对提高‘数学应用题’得分率”有帮助.
解答:解:(1)由题意,甲、乙两班均有学生50人,
甲班优秀人数为30人,优秀率为
30
50
=60%,
乙班优秀人数为25人,优秀率为
25
50
=50%,
∴甲、乙两班的优秀率分别为60%和50%.
(2)根据题意做出列联表
优秀人数 非优秀人数 合计
甲班 30 20 50
乙班 25 25 50
合计 55 45 100
∵K2=100×(30×25-20×25)2÷(50×50×55×45)=
100
99
≈1.010,
∴由参考数据知,没有75%的把握认为“加强‘语文阅读理解’
训练对提高‘数学应用题’得分率”有帮助.
点评:本题考查列联表,考查独立性检验的作用,在解题时注意求这组数据的观测值时,注意数字的运算,因为这种问题一般给出公式,我们要代入公式进行运算,得到结果.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•河北模拟)已知函数f(x)=xlnx,g(x)=-x2+ax-2
(Ⅰ)求函数f(x)在[t,t+2](t>0)上的最小值;
(Ⅱ)若函数y=f(x)+g(x)有两个不同的极值点x1,x2(x1<x2)且x2-x1>ln2,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•河北模拟)设全集U=R,A={x|2(x-1)2<2},B={x|log
1
2
(x2+x+1)>-log2(x2+2)
},则图中阴影部分表示的集合为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•河北模拟)如图是一个程序框图,该程序框图输出的结果是
4
5
,则判断框内应该填入的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•河北模拟)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π),其导函数f'(x)的部分图象如图所示,则函数f(x)的解析式为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•河北模拟)定义在[1,+∞)上的函数f(x)满足:①f(2x)=cf(x)(c为正常数);②当2≤x≤4时,f(x)=1-(x-3)2,若函数f(x)的图象上所有极大值对应的点均落在同一条直线上,则c等于(  )

查看答案和解析>>

同步练习册答案