精英家教网 > 高中数学 > 题目详情
18.讨论函数f(x)=$\frac{\sqrt{1{6}^{x}+1}+{2}^{x}}{{2}^{x}}$的奇偶性.

分析 根据函数奇偶性的定义进行判断即可.

解答 解:函数的定义域为(-∞,+∞),
则f(x)=$\frac{\sqrt{1{6}^{x}+1}+{2}^{x}}{{2}^{x}}$=$\sqrt{\frac{1{6}^{x}+1}{({2}^{x})^{2}}}$+1=$\sqrt{\frac{1{6}^{x}+1}{{4}^{x}}}$+1=$\sqrt{{4}^{x}+{4}^{-x}}$+1,
则f(-x)=$\sqrt{{4}^{x}+{4}^{-x}}$+1=f(x),
则函数f(x)为偶函数.

点评 本题主要考查函数奇偶性的判断,根据函数特点将函数进行化简是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知log0.72m<log0.7(m-1),则m的取值范围是(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f(x)是定义在[-1,1]上的增函数,且f(x-1)<f(1-3x),求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知Sn为数列{an}的前n项和,且Sn=2an-n-2.
(1)求a1,a2,a3,a4
(2)求证:{an+1}是等比数列,并求an的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.关于x的不等式x2-ax-a2+1<0的解集为A,若集合A中恰有两个整数,则实数a的取值范围是{a|-$\frac{\sqrt{65}}{5}$≤a<-$\frac{2\sqrt{10}}{5}$,或$\frac{2\sqrt{10}}{5}$<a≤$\frac{\sqrt{65}}{5}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.下列命题:
①存在实数x,使sinx+cosx=$\frac{π}{3}$;
②若△ABC是锐角三角形,则sinA>cosB;
③函数y=sin(2x+$\frac{5π}{2}$)是奇函数;
④函数y=sin2x的图象向左平移$\frac{π}{8}$个单位.得到y=sin(2x+$\frac{π}{4}$)的图象.
其中正确命题的序号是①②④(填上你认为所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列x,2x+2,3x+3,…成等比数列,求这个数列的第4项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.一个等比数列的公比q≠1,则以下选项正确的是(  )
A.S${\;}_{2n}^{2}$=Sn•S3nB.S${\;}_{2n}^{2}$+S${\;}_{3n}^{2}$=Sn(S2n+S3n
C.S${\;}_{n}^{2}$+S${\;}_{2n}^{2}$=Sn(S2n+S3nD.S${\;}_{n}^{2}$+S${\;}_{3n}^{2}$=S2n(Sn+S3n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,若b=acosC,试判断该三角形的形状.

查看答案和解析>>

同步练习册答案