精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥的底面是正方形,每条侧棱的长都是底面边长的倍,为侧棱上的点.

(1)求证:

(2)若平面,求二面角的大小;

(3)在(2)的条件下,侧棱上是否存在一点,使得平面.若存在,求的值;若不存在,试说明理由.

【答案】(1)见证明;(2) (3)见解析

【解析】

(1)先证明平面,即可得到

(2)由题设知,连,设交于,由题意知平面.以为坐标原点,分别为轴、轴、轴正方向,建立空间直角坐标系,分别求出平面与平面的一个法向量,求法向量的夹角余弦值,即可求出结果;

(3)要使平面,只需与平面的法向量垂直即可,结合(2)中求出的平面的一个法向量,即可求解.

(1)连,由题意.

在正方形中,

所以平面,得

(2)由题设知,连,设交于,由题意知平面.以为坐标原点,分别为轴、轴、轴正方向,建立坐标系如图.

设底面边长为,则高.

平面

则平面的一个法向量

平面的一个法向量

又二面角为锐角,则二面角

(3)在棱上存在一点使平面.由(2)知是平面的一个法向量,

平面,所以

.

即当时,

不在平面内,故平面.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】目前有声书正受着越来越多人的喜爱.某有声书公司为了解用户使用情况,随机选取了名用户,统计出年龄分布和用户付费金额(金额为整数)情况如下图.

有声书公司将付费高于元的用户定义为“爱付费用户”,将年龄在岁及以下的用户定义为“年轻用户”.已知抽取的样本中有的“年轻用户”是“爱付费用户”.

(1)完成下面的列联表,并据此资料,能否有的把握认为用户“爱付费”与其为“年轻用户”有关?

爱付费用户

不爱付费用户

合计

年轻用户

非年轻用户

合计

(2)若公司采用分层抽样方法从“爱付费用户”中随机选取人,再从这人中随机抽取人进行访谈,求抽取的人恰好都是“年轻用户”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,左、右焦点分别是,过的直线与椭圆交于两点,且的周长为.

(1)求椭圆的方程;

(2)若点满足,求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为响应党中央“扶贫攻坚”的号召,某单位指导一贫困村通过种植紫甘薯来提高经济收入.紫甘薯对环境温度要求较高,根据以往的经验,随着温度的升高,其死亡株数成增长的趋势.下表给出了2017年种植的一批试验紫甘薯在温度升高时6组死亡的株数:

经计算: ,其中分别为试验数据中的温度和死亡株数, .

(1)若用线性回归模型,求关于的回归方程(结果精确到);

(2)若用非线性回归模型求得关于的回归方程为,且相关指数为.

(i)试与(1)中的回归模型相比,用说明哪种模型的拟合效果更好;

(ii)用拟合效果好的模型预测温度为时该批紫甘薯死亡株数(结果取整数).

附:对于一组数据 …… ,其回归直线的斜率和截距的最小二乘估计分别为: ;相关指数为: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若恒成立,求实数的最大值

(2)在(1)成立的条件下,正实数满足,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—5: 不等式选讲

已知函数f(x) 的定义域为R.

()求实数m的取值范围;

()m的最大值为n,当正数ab满足 n时,求7a4b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数且,曲线的参数方程为为参数),以为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

(1)求的普通方程及的直角坐标方程;

(2)若曲线与曲线分别交于点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求函数图像在处的切线方程;

2)证明:

3)若不等式对于任意的均成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案