【题目】已知抛物线,抛物线上的点到焦点的距离为2.
(1)求抛物线的方程和的值;
(2)如图,是抛物线上的一点,过作圆的两条切线交轴于,两点,若的面积为,求点的坐标.
【答案】(1),;(2)或.
【解析】
(1)根据题意,由抛物线的定义可求出,即可求出抛物线的方程,再将点点代入抛物线方程中,即可求出的值;
(2)设点,分类讨论当切线的斜率不存在时和当切线的斜率不存在时,结合题给,得出不符合题意;则当切线,的斜率都存在时,则,设切线方程为,根据圆的切线的性质和点到直线的距离公式,以及韦达定理的应用,即可求出和的坐标,再结合可求出,即可求出点点的坐标.
解:(1)由抛物线的定义,易得,
∴,
∴抛物线的方程为,
由于点在抛物线上,
则,解得:.
(2)设点,
当切线的斜率不存在时,,
设切线,
圆心到切线的距离为半径长,即,
∴,∴,∴,不符合题意;
同理,当切线的斜率不存在时,,不符合题意;
当切线,的斜率都存在时,则,
设切线方程为,
圆心到切线的距离为半径长,即,
两边平方整理得,
设,为方程的两根,则,
由切线,切线,
得,,
∴
,
由于,则,
整理得:,
∴或72,
∴或.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为(为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.
(1)当时,判断直线与曲线的位置关系;
(2)若直线与曲线相交所得的弦长为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4—4:坐标系与参数方程
已知曲线的参数方程为(为参数),以平面直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(Ⅰ)求曲线的直角坐标方程及曲线上的动点到坐标原点的距离的最大值;
(Ⅱ)若曲线与曲线相交于,两点,且与轴相交于点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校从参加某次知识竞赛的同学中,选取60名同学将其成绩(单位:分.百分制,均为整数)分成,,,,,六组后,得到部分频率分布直方图(如图),观察图形中的信息,回答下列问题.
(1)求分数在内的频率,并补全这个频率分布直方图;
(2)从频率分布直方图中,估计本次考试成绩的众数和平均数;
(3)若从第1组和第6组两组学生中,随机抽取2人,求所抽取2人成绩之差的绝对值大于10的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com