精英家教网 > 高中数学 > 题目详情

设f(x)=x3-数学公式x2-2x+5
(Ⅰ)求函数f(x)的单调区间.
(Ⅱ)求极值点与极值.

解:(I)f(x)=x3-x2-2x+5,f′(x)=3x2-x-2,
令f′(x)>0即3x2-x-2>0解得x∈(-∞,-)∪(1,+∞)
令f′(x)<0即3x2-x-2<0解得x∈(-,1),
故函数在,(1,+∞)上为单调递增区间,在上为单调递减区间.
(II)由f′(x)=0,即3x2-x-2=0解得x=-或x=1,
当x变化时,f′(x),f(x)的变化如下表:
x(-∞,--(-,1)1(1,+∞)
f′(x)+0-0+
f(x)极大值极小值
∴当x=1时,f(x)取得极大值,当x=时,f(x)取得极小值
分析:(I)先求导数fˊ(x)然后在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,fˊ(x)>0的区间为单调增区间,fˊ(x)<0的区间为单调减区间.
(II)令导函数等于0求出x的值,根据x的值分区间讨论导函数的正负,进而得到函数的单调区间,得到函数的极大值和极小值.
点评:本题考查了函数的单调性,会利用导函数的正负判断函数的单调性并根据函数的增减性得到函数的极值.利用导数判断函数的单调性的步骤是:(1)确定函数的定义域;(2)求导数fˊ(x);(3)在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0;(4)确定函数的单调区间.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

3、设f(x)=x3+x-8,现用二分法求方程x3+x-8=0在区间(1,2)内的近似解,计算得f(1)<0,f(1.5)<0,f(1.75)<0,f(2)>0,则方程的根所在的区间是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=x3+ax2+bx+c,又k是一个常数,已知当k<0或k>4时,f(x)-k=0只有一个实根,当0<k<4时,f(x)-k=0有三个相异实根,现给出下列命题:
(1)f(x)-4=0和f′(x)=0有且只有一个相同的实根.
(2)f(x)=0和f′(x)=0有且只有一个相同的实根.
(3)f(x)+3=0的任一实根大于f(x)-1=0的任一实根.
(4)f(x)+5=0的任一实根小于f(x)-2=0的任一实根.
其中错误命题的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•韶关一模)设f(x)在区间I上有定义,若对?x1,x2∈I,都有f(
x1+x2
2
)≥
f(x1)+f(x2)
2
,则称f(x)是区间I的向上凸函数;若对?x1,x2∈I,都有f(
x1+x2
2
)≤
f(x1)+f(x2)
2
,则称f(x)是区间I的向下凸函数,有下列四个判断:
①若f(x)是区间I的向上凸函数,则-f(x)在区间I的向下凸函数;
②若f(x)和g(x)都是区间I的向上凸函数,则f(x)+g(x)是区间I的向上凸函数;
③若f(x)在区间I的向下凸函数,且f(x)≠0,则
1
f(x)
是区间I的向上凸函数;
④若f(x)是区间I的向上凸函数,?x1,x2,x3,x4∈I,则有f(
x1+x2+x3+x4
4
)≥
f(x1)+f(x2)+f(x3)+f(x4)
4

其中正确的结论个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•朝阳区二模)已知函数f(x)=x3-
3
2
mx2+n
,1<m<2
(Ⅰ)若f(x)在区间[-1,1]上的最大值为1,最小值为-2,求m、n的值;
(Ⅱ)在(Ⅰ)的条件下,求经过点P(2,1)且与曲线f(x)相切的直线l的方程;
(Ⅲ)设函数f(x)的导函数为g(x),函数F(x)=
g(x)+3x+1
6
e2x
,试判断函数F(x)的极值点个数,并求出相应实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在R上的偶函数,且f(x+2)=f(x)恒成立;当x∈[0,1]时,f(x)=x3-4x+3.有下列命题:
f(-
3
4
) <f(
15
2
)

②当x∈[-1,0]时f(x)=x3+4x+3;
③f(x)(x≥0)的图象与x轴的交点的横坐标由小到大构成一个无穷等差数列;
④关于x的方程f(x)=|x|在x∈[-3,4]上有7个不同的根.
其中真命题的个数为(  )

查看答案和解析>>

同步练习册答案