精英家教网 > 高中数学 > 题目详情
5.已知顶点在原点,焦点在y轴上的抛物线过点P(2,1).
(1)求抛物线的标准方程;
(2)过点P作直线l与抛物线有且只有一个公共点,求直线l的方程.

分析 (1)设抛物线的标准方程为 x2=2py,把点P(2,1)代入可得 p 值,从而求得抛物线的标准方程.
(2)当斜率不存在时,直线方程为x=2 符合题意;当斜率存在时,先设直线方程并联立抛物线方程,得出△=0,即可求出结果.

解答 解:(1)设抛物线的标准方程为  x2=2py,把点P(2,1)代入可得 4=2p,∴p=2,
故所求的抛物线的标准方程为x2=4y.
(2)①当斜率不存在时,直线方程为x=2 符合题意
②当斜率存在时,设直线方程为:y-1=k(x-2)即y=kx-2k+1
联立方程可得,$\left\{\begin{array}{l}{x}^{2}=4y\\ y=kx-2k+1\end{array}\right.$,消去y整理可得x2-4kx+8k-4=0,
∵直线与抛物线只有一个公共点
∴△=16k2-32k+16=0
∴k=1
综上可得,x-y-1=0,x=2,

点评 本题考查抛物线的标准方程,直线和圆锥曲线的位置关系,考查分析问题解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.(文科生做)在平面直角坐标系xOy中,已知圆${C_1}:{(x-4)^2}+{(y-5)^2}=4$和圆${C_2}:{(x+3)^2}+{(y-1)^2}=4$,
(1)若直线l1过点A(2,0),且与圆C1相切,求直线l1的方程;
(2)若直线l2过点B(4,0),且被圆C2截得的弦长为$2\sqrt{3}$,求直线l2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设集合M={-1,0,1},N={-2,-1,0,1,2},则M∩N=(  )
A.{0}B.{-1,0,1}C.{-1,1}D.{0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数y=$\frac{1}{2}$cos2x+$\frac{{\sqrt{3}}}{2}$sinxcosx+1,x∈R.
(1)求它的振幅、周期和初相;
(2)求函数的最大值,最小值以及取得最大最小值时的x的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.直线2x-y+7=0的纵截距为(  )
A.7B.-1C.$\frac{7}{2}$D.$-\frac{7}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知命题“设a,b,c∈R,如果ac2>bc2,则a>b”,则它的逆命题、否命题和逆否命题中真命题的个数为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知圆G:x2+y2-x-$\sqrt{3}$y=0,经过椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的右焦点F及上顶点B,过圆外一点(m,0)(m>a)倾斜角为$\frac{3π}{4}$的直线l交椭圆于C,D两点.
(1)求椭圆的方程;
(2)若右焦点F在以线段CD为直径的圆E的内部,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.由曲线xy=1,直线y=x,x=3所围成的封闭图形的面积为(  )
A.$\frac{1}{2}+ln3$B.4-ln3C.$\frac{9}{2}$D.$\frac{11}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知f(x)=x2-2|x|(x∈R).
(Ⅰ)若方程f(x)=kx有三个解,试求实数k的取值范围;
(Ⅱ)求m,n(m<n),使函数f(x)的定义域与值域均为[m,n].

查看答案和解析>>

同步练习册答案