精英家教网 > 高中数学 > 题目详情

【题目】已知f(x)=x5+ax3+bx+1且f(﹣2)=10,那么f(2)=

【答案】﹣8
【解析】解:f(x)=x5+ax3+bx+1且f(﹣2)=10,
可得﹣(25+8a+2b)+1=10,
f(2)=25+8a+2b+1=﹣9+1=﹣8.
所以答案是:﹣8.
【考点精析】解答此题的关键在于理解函数奇偶性的性质的相关知识,掌握在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若全集U={1,2,3,4,5,6},M={1,4,5},N={2,3},则集合(UN)∩M=(  )
A.{2,3}
B.{2,3,5}
C.{1,4}
D.{1,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】方程2x+x﹣2=0的解所在的区间为(
A.(﹣1,0)
B.(0,1)
C.(1,2)
D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)与g(x)分别由如表给出,那么g(f(2))=

x

1

2

3

4

f(x)

2

3

4

1

x

1

2

3

4

g(x)

2

1

4

3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校艺术节对同一类的A,B,C,D四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下: 甲说:“是C或D作品获得一等奖”;
乙说:“B作品获得一等奖”;
丙说:“A,D两项作品未获得一等奖”;
丁说:“是C作品获得一等奖”.
若这四位同学中只有两位说的话是对的,则获得一等奖的作品是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=5x+b的图象经过第一、三、四象限,则实数b的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】面对环境污染党和政府高度重视,各级环保部门制定了严格措施治理污染,同时宣传部门加大保护环境的宣传力度,因此绿色低碳出行越来越成为市民的共识,为此某市在八里湖新区建立了公共自行车服务系统,市民凭本人二代身份证到公共自行车服务中心办理诚信借车卡,初次办卡时卡内预先赠送20分,当诚信积分为0时,借车卡自动锁定,限制借车,用户应持卡到公共自行车服务中心以1元购1个积分的形式再次激活该卡,为了鼓励市民租用公共自行车出行,同时督促市民尽快还车,方便更多的市民使用,公共自行车按每车每次的租用时间进行扣分缴费,具体扣分标准如下:
①租用时间不超过1小时,免费;
②租用时间为1小时以上且不超过2小时,扣1分;
③租用时间为2小时以上且不超过3小时,扣2分;
④租用时间为3小时以上且不超过4小时,扣3分;
⑤租车时间超过4小时除扣3分外,超出时间按每小时扣2分收费(不足1小时的部分按1小时计算)
甲、乙两人独立出行,各租用公共自行车一次,且两人租车时间都不会超过4小时,设甲、乙租用时间不超过一小时的概率分别是0.4,0.5;租用时间为1小时以上且不超过2小时的概率分别是0.3,0.3;租用时间为2小时以上且不超过3小时的概率分别是0.2,0.1.
(1)求甲、乙两人所扣积分相同的概率;
(2)设甲、乙两人所扣积分之和为随机变量X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲
设a,b为互不相等的正实数,求证:4(a3+b3)>(a+b)3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p,q都是假命题,则下列命题为真命题的是(
A.p∨q
B.p∧q
C.(¬p)∧q
D.p∨(¬q)

查看答案和解析>>

同步练习册答案