精英家教网 > 高中数学 > 题目详情
3.已知p:$\frac{x-1}{x-3}$≤0,q:x2-ax≤x-a,若¬p是¬q的充分条件,则实数a的取值范围是[1,3).

分析 先求解不告示式x2-ax≤x-a的解集B,由?p是?q的充分条件得q是p的充分条件可知B是A的子集,利用集合的包含关系可以求得.

解答 解:关于p:$\frac{x-1}{x-3}$≤0,解得:1≤x<3,
设A=[1,3),
关于q:x2-ax≤x-a,
由题意,x2-ax≤x-a
即(x-1)(x-a)≤0,①,
又若?p是?q的充分条件,?q⇒p,
∴q是p的充分条件,
故设B=[1,a],
可知B⊆A.
∵A={x|1≤x<3},由于q是p的充分条件,
从而有a≥1,
当a=1时,①的解集为{1},符合B⊆A;
当a>1时,①的解集为[1,a],若B⊆A,
则a<3.
∴1<a<3
综上所述,得实数a的取值范围是[1,3),
故答案为:[1,3).

点评 利用集合的包含关系解决有关四种条件问题是一种行之有效的方法,注意细细体会.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.函数f(x)=(x-1)(x2+ax+b)x∈[-2,0]的图象关于点(-1,0)对称,则f(x)的最小值是-3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=$\sqrt{2}$,且$\overrightarrow{OA}$•$\overrightarrow{OB}$=1,若点C满足|$\overrightarrow{OA}$+$\overrightarrow{CB}$|=1,则|$\overrightarrow{OC}$|的取值范围是[$\sqrt{6}$-1,$\sqrt{6}$+1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)是定义在R上的奇函数,x<0时,f(x)=$\frac{x}{2x-1}$,则f(2)=-$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x+$\frac{2k+1}{x}$,其中k∈R.
(1)当k≥0时,证明f(x)在[$\sqrt{2k+1}$,+∞)上单调递增;
(2)若对任意k∈[1,7],不等式f(x)≥m在x∈[2,3]上恒成立,求实数m的取值范围;
(3)若关于x的方程f(|2x--1|)-3k-2=0有三个不同的实数解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(Ⅰ)求(-$\frac{1}{2}$)-2+125${\;}^{\frac{2}{3}}$+2lg$\frac{1}{2}$-lg25的值;
(Ⅱ)若|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{2π}{3}$,求$\overrightarrow{a}$•$\overrightarrow{b}$与|$\overrightarrow{a}$+2$\overrightarrow{b}$|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知a=lg$\sqrt{e}$,b=lg2e,c=e0.1,则a、b、c的大小顺序为(  )
A.a>b>cB.c>b>aC.c>a>bD.b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若复数z满足(1+i)z=2-i,则|z|=$\frac{\sqrt{10}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知α∈(0,$\frac{π}{2}$),β∈(0,$\frac{π}{2}$),且cosα=$\frac{1}{7}$,cos(α+β)=-$\frac{11}{14}$,则sinβ=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

同步练习册答案