15.
已知:平行四边形ABCD,对角线AC,BD交于点O,点E为线段OB中点,完成下列各题(用于填空的向量为图中已有有向线段所表示向量).
(1)当以{$\overrightarrow{AB}$,$\overrightarrow{AD}$}为基底时,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow{b}$,
用$\overrightarrow{a}$,$\overrightarrow{b}$表示$\overrightarrow{OD}$=$\frac{1}{2}(\overrightarrow{b}-\overrightarrow{a})$;
用$\overrightarrow{a}$,$\overrightarrow{b}$表示$\overrightarrow{AE}$=$\frac{3}{4}\overrightarrow{a}+\frac{1}{4}\overrightarrow{b}$;
(2)设点MN分别为边DC,BC中点.
①当以{$\overrightarrow{AB}$,$\overrightarrow{AD}$}为基底时,设$\overrightarrow{AB}$=$\overrightarrow{c}$,$\overrightarrow{AD}$=$\overrightarrow{d}$,
用$\overrightarrow{c}$,$\overrightarrow{d}$表示$\overrightarrow{AN}$,则$\overrightarrow{AN}$=$\overrightarrow{c}$+$\frac{1}{2}\overrightarrow{d}$.
②当以{$\overrightarrow{AM}$,$\overrightarrow{AN}$}为基底时,设$\overrightarrow{AM}$=$\overrightarrow{m}$,$\overrightarrow{AN}$=$\overrightarrow{n}$,用$\overrightarrow{m}$,$\overrightarrow{n}$表示:
$\overrightarrow{AB}$=$\frac{4}{3}\overrightarrow{n}-\frac{2}{3}\overrightarrow{m}$,$\overrightarrow{AC}$=$\frac{2}{3}\overrightarrow{n}+\frac{2}{3}\overrightarrow{m}$,$\overline{OE}$=$\frac{1}{2}\overrightarrow{n}+\frac{1}{2}\overrightarrow{m}$.