精英家教网 > 高中数学 > 题目详情
185、在等差数列{an}中,an≠0,当n≥2时,an+1-an2+an-1=0,若S2k-1=46,则k的值为
12
分析:根据等差中项的性质可得an+1+an-1=2an,与an+1-an2+an-1=0,联立方程求得an,当n=2时求得a1,最后根据等差数列的求和公式求得k.
解答:解:∵数列{an}为等差数列.
∴an+1+an-1=2an
∵an+1-an2+an-1=0,联立方程求得an=2
当n=2时,a3+a1=2a2
∴a1=2a2-a3=2
∴S2k-1=(2k-1)•2=46,解得k=12
故答案为12.
点评:本题主要考查了等差数列的性质和等差数列的求和问题.此类题往往需要先求出数列的通项公式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在等差数列{an}中,a1=-2010,其前n项的和为Sn.若
S2010
2010
-
S2008
2008
=2,则S2010=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,a1+3a8+a15=60,则2a9-a10的值为
12
12

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在等差数列{an}中,d>0,a2008、a2009是方程x2-3x-5=0的两个根,那么使得前n项和Sn为负值的最大的n的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,已知a1=2,a2+a3=13,则a4+a5+a6等于=
42
42

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,若S4=1,S8=4,则a17+a18+a19+a20的值=
9
9

查看答案和解析>>

同步练习册答案