精英家教网 > 高中数学 > 题目详情
5.cos1740°=$\frac{1}{2}$.

分析 直接利用诱导公式化简求值即可.

解答 解:cos1740°=cos(-60°)=cos60°=$\frac{1}{2}$
故答案为:$\frac{1}{2}$;

点评 本题考查诱导公式的应用,特殊角的三角函数值的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.设A(2,2,4),B(1,4,6),C(0,1,2),则AB的中点M到C点的距离CM=$\frac{\sqrt{61}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=2|x+a|-|x-b|
(1)当a=1,b=-1时,求使f(x)≥2$\sqrt{2}$的x取值范围;
(2)若f(x)≥$\frac{1}{32}$恒成立,求a-b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知曲线C1的参数方程为$\left\{\begin{array}{l}{x=-\sqrt{3}+\frac{3}{5}t}\\{y=1+\frac{4}{5}t}\end{array}\right.$(t为参数),以O为极点,x轴正半轴为极轴建立坐标系,曲线C2的极坐标方程为ρ=4sin(θ-$\frac{π}{3}$)
(1)将C1的参数方程化为普通方程,C2的极坐标方程化为直角坐标方程;
(2)若C1与C2交于两点A、B,点P(x,y)是线段AB上的动点,求3x-y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如图是一个算法的伪代码,则输出i的值为5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某城市的夏季室外温度y(℃)的波动近似地按照规则$y=27+10sin({\frac{π}{12}t+π})$,其中t(h)是从某日0点开始计算的时间,且t≤24.
(1)若在t0(h)(t0≤6)时的该城市室外温度为22°C,求在t0+8(h)时的城市室外温度;
(2)某名运动员要在这个时候到该城市参加一项比赛,比赛在当天的10时至16时进行,而该运动员一旦到室外温度超过36°C的地方就会影响正常发挥,试问该运动员会不会因为气温影响而不能正常发挥?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若关于x的不等式xa2-2xa-3<0在区间[-1,1]上恒成立,则实数a的取值范围是(  )
A.[-1,1]B.[-1,3]C.(-1,1)D.(-1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水年入流量X(年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上,其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.
(1)求未来4年中,至多有1年的年入流量超过120的概率.
(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X限制,并有如下关系:
年入流量X40<X<8080≤X≤120X>120
发电机最多
可运行台数
123
若某台发电机运行,则该台年利润为1000万元;若某台发电机未运行,则该台年亏损160万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)满足:当f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^x}\\ f(x+1)\end{array}\right.{,^{\;}}$$\begin{array}{l}x≥4\\ \\ x<4\end{array}$,则f(2+log23)=(  )
A.$\frac{1}{24}$B.$\frac{1}{12}$C.$\frac{1}{8}$D.$\frac{3}{8}$

查看答案和解析>>

同步练习册答案