精英家教网 > 高中数学 > 题目详情
18.设函数f(x)=(sinx+cosx)2+cos2x.
(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)求f(x)在区间[-$\frac{π}{2}$,$\frac{π}{6}$]上的最大值和最小值.

分析 (Ⅰ)化简已知函数可得f(x)=1+$\sqrt{2}$sin(2x+$\frac{π}{4}$),解不等式2kπ-$\frac{π}{2}$≤2x+$\frac{π}{4}$≤2kπ+$\frac{π}{2}$可得;
(Ⅱ)由x∈[-$\frac{π}{2}$,$\frac{π}{6}$],可得2x+$\frac{π}{4}$∈[-$\frac{3π}{4}$,$\frac{7π}{12}$],可得三角函数的最值.

解答 解:(Ⅰ)化简已知函数可得f(x)=(sinx+cosx)2+cos2x
=1+sin2x+cos2x=1+$\sqrt{2}$sin(2x+$\frac{π}{4}$),
由2kπ-$\frac{π}{2}$≤2x+$\frac{π}{4}$≤2kπ+$\frac{π}{2}$可得kπ-$\frac{3π}{8}$≤x≤kπ+$\frac{π}{8}$,
∴f(x)的单调递增区间为:[kπ-$\frac{3π}{8}$,kπ+$\frac{π}{8}$]k∈Z;
(Ⅱ)∵x∈[-$\frac{π}{2}$,$\frac{π}{6}$],∴2x+$\frac{π}{4}$∈[-$\frac{3π}{4}$,$\frac{7π}{12}$],
∴当2x+$\frac{π}{4}$=$\frac{π}{2}$即x=$\frac{π}{8}$时,f(x)有最大值$\sqrt{2}$+1,
当2x+$\frac{π}{4}$=-$\frac{π}{2}$即x=-$\frac{3π}{8}$时,f(x)有最小值-$\sqrt{2}$+1

点评 本题考查两角和与差的正弦函数,涉及三角函数的单调性和周期性,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.(1)已知圆(x+2)2+y2=1过椭圆C的一个顶点和焦点,求椭圆C标准方程.
(2)已知椭圆$\frac{{x}^{2}}{8+k}$+$\frac{{y}^{2}}{9}$=1的离心率为$\frac{1}{2}$,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)=$\frac{1}{1-x}$+lg(2+x)的定义域是(  )
A.(-2,+∞)B.(-∞,-2)C.(-2,1)D.(-2,1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x2-1,g(x)=1+ax(a∈R),
(1)若a=-1,解不等式|f(x)|≤g(x);
(2)讨论关于x的方程|f(x)|=g(x)的根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.三个数a=0.152,b=20.15,c=log20.15之间的大小关系是(  )
A.c<a<bB.c<b<aC.a<b<cD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.△ABC的内角A,B,C的对边分别为a,b,c,若acosC+ccosA=bsinB,则△ABC的形状一定是(  )
A.等边三角形B.直角三角形
C.钝角三角形D.不含60°角的等腰三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知p:$\frac{1}{4}$≤2x≤$\frac{1}{2}$,q:x+$\frac{1}{x}$∈[-$\frac{5}{2}$,-2],则q是p的(  )
A.充分不必要条件B.必要不充分条件
C.必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.f(x)=$\left\{\begin{array}{l}{ln(x+1)-\frac{1}{1+{x}^{2}},x≥0}\\{ln(-x+1)-\frac{1}{1+{x}^{2}},x<0}\end{array}\right.$,则使得f(a-2)<f(4-a2)成立的a取值范围是a>2或a<-3或-1<a<2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若函数f(x)=$\frac{kx+7}{\sqrt{k{x}^{2}+4kx+3}}$的定义域为R,则实数k的取值范围为[0,$\frac{3}{4}$).

查看答案和解析>>

同步练习册答案