精英家教网 > 高中数学 > 题目详情
已知sinα=
4
5
,α∈(
π
2
2
).
(1)求sin2α-cos2
α
2
的值;
(2)求函数f(x)=
5
6
cosαsin2x-
1
2
cos2x的最小正周期和单调递增区间.
考点:同角三角函数基本关系的运用,三角函数的周期性及其求法
专题:三角函数的求值
分析:(1)由sinα的值及α的范围,利用同角三角函数间的基本关系求出cosα的值,原式利用二倍角的正弦、余弦函数公式化简,把各自的值代入计算即可求出值;
(2)把cosα的值代入f(x)解析式,利用两角和与差的正弦函数公式化为一个角的正弦函数,找出ω的值,代入周期公式求出最小正周期;利用正弦函数的单调性求出f(x)的递增区间即可.
解答: 解:(1)∵sinα=
4
5
>0,
∴α∈(
π
2
,π),
∴cosα=-
1-sin2α
=-
3
5

则原式=2sinαcosα-
1+cosα
2
=2×
4
5
×(-
3
5
)-
1-
3
5
2
=-
24
25
-
1
5
=-
29
25

(2)把cosα=-
3
5
代入得:f(x)=
5
6
×(-
3
5
)sin2x-
1
2
cos2x=-
1
2
(sin2x+cos2x)=-
2
2
sin(2x+
π
4
),
∵ω=2,∴T=π,
令-
π
2
+2kπ≤2x+
π
4
π
2
+2kπ,k∈Z,得到-
8
+kπ≤x≤
π
8
+kπ,k∈Z,
则f(x)的单调递增区间为[-
8
+kπ,
π
8
+kπ],k∈Z.
点评:此题考查了同角三角函数间基本关系的运用,熟练掌握基本关系是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求斜率为3,且与圆x2+y2-4x=0相切的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

某超市对某商品开展为期两天的抽奖促销活动,第一天的活动方案为:顾客转动如图所示圆盘,当指针指向阴影部分(图中四个阴影部分均为扇形,且每个扇形圆心角均为15°,边界忽略不计)即为中奖.
(Ⅰ)求顾客按第一天活动方案抽奖一次中奖的概率;
(Ⅱ)若第二天活动方案为:从装有3个白色乒乓球和3个红色乒乓球的盒子中一次性摸出2个乒乓球(球除颜色外不加区分),如果摸到的是2个红色乒乓球,即为中奖.问:某顾客抽奖一次,哪天中奖的可能性大?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

若圆C:(x-a)2+(y-a-1)2=a2与x,y轴都有公共点,则实数a的取值范围是(  )
A、(-
1
2
,0)∪(0,+∞)
B、[-
1
2
,0)∪(0,+∞)
C、(-1,-
1
2
]
D、(-∞,-
1
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,三内角A,B,C的对边分别是a,b,c,且asinA+bsinB-csinC=
2
5
5
asinB.
(Ⅰ)求cosC的值;
(Ⅱ)若cosA=
10
10
,b=10,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,Sn为其前n项和,已知a5=-3,S7=-14.数列{bn}满足bn+1-2bn=0,b2+b4=20.
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)设cn=
an
bn
,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={1,2,3},B={3,6,7},则A∪B等于(  )
A、{3}
B、{3,4}
C、{1,2,3,6,7}
D、∅

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x2-2(a+1)x+1在区间[2,+∞)上单调递增,则实数a的取值范围是(  )
A、(-∞,1]
B、(-∞,2]
C、[1,+∞)
D、[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

设坐标原点为O,抛物线y2=2x与过焦点的直线交于A、B两点,则
OA
OB
等于(  )
A、
3
4
B、-
3
4
C、3
D、-3

查看答案和解析>>

同步练习册答案