精英家教网 > 高中数学 > 题目详情
20.已知数列{an}的前n项和为Sn,且Sn=2an-n.
(Ⅰ)证明数列{an+1}是等比数列,求数列{an}的通项公式;
(Ⅱ)记bn=$\frac{1}{{a}_{n+1}}$+$\frac{1}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和Tn

分析 (Ⅰ)利用数列递推式,结合等比数列的定义,即可得到结论;
(Ⅱ)由(Ⅰ)bn=$\frac{1}{{a}_{n+1}}$+$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{{a}_{n}+1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{{2}^{n-1}}$-$\frac{1}{{2}^{n+1}-1}$,利用“裂项法”即可求得数列{bn}的前n项和Tn

解答 解:(Ⅰ)证明:令n=1,得a1=2a1-1,由此得a1=1.
由于Sn=2an-n,则Sn+1=2an+1-(n+1),
两式相减得Sn+1-Sn=2an+1-(n+1)-2an+n,
即an+1=2an+1.
∴an+1+1=2an+1+1=2(an+1),即$\frac{{a}_{n+1}+1}{{a}_{n+1}}$=2,
故数列{an+1}是等比数列,其首项为a1+1=2,
故数列{an+1}的通项公式是an+1=2•2n-1=2n
故数列{an}的通项公式是an=2n-1.
(Ⅱ)由(Ⅰ)得,bn=$\frac{1}{{a}_{n+1}}$+$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{{a}_{n}+1}{{a}_{n}{a}_{n+1}}$=$\frac{{2}^{n}}{({2}^{n}-1)({2}^{n+1}-1)}$,
=$\frac{({2}^{n+1}-1)-({2}^{n}-1)}{({2}^{n}-1)({2}^{n+1}-1)}$=$\frac{1}{{2}^{n}-1}$-$\frac{1}{{2}^{n+1}-1}$,
所以Tn=b1+b2+…+bn=($\frac{1}{{2}^{1}-1}$-$\frac{1}{{2}^{2}-1}$)+($\frac{1}{{2}^{2}-1}$-$\frac{1}{{2}^{3}-1}$)+…+($\frac{1}{{2}^{n}-1}$-$\frac{1}{{2}^{n+1}-1}$,),
=$\frac{1}{{2}^{1}-1}$-$\frac{1}{{2}^{2}-1}$+$\frac{1}{{2}^{2}-1}$-$\frac{1}{{2}^{3}-1}$+…+$\frac{1}{{2}^{n}-1}$-$\frac{1}{{2}^{n+1}-1}$,
=1-$\frac{1}{{2}^{n+1}-1}$,
数列{bn}的前n项和Tn=1-$\frac{1}{{2}^{n+1}-1}$.

点评 本题考查数列的通项公式的求法,考查“裂项法”求数列的前n项和公式,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.等差数列{an}前n项和为Sn,若bn=$\frac{1}{S_n}$,a3b3=$\frac{1}{2}$,S5+S3=21
(1)求Sn
(2)记Tn=$\sum_{i=1}^n{b_i}$,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.直线l1的方向向量为$\vec a=(1,2)$,直线l2的方向向量为$\vec b=(1,-3)$,那么l1与l2所成的角是(  )
A.30°B.45°C.150°D.160°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知曲线C的参数方程为$\left\{\begin{array}{l}{x=2+4cosφ}\\{y=4sinφ}\end{array}\right.$,(φ为参数),以原点O为极点,以x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$.
(Ⅰ)将直线l写成参数方程$\left\{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}\right.$,(t为参数)的形式,并求曲线C的普通方程;
(Ⅱ)若直线l与曲线C交于A,B两点,点P的直角坐标为(1,0),求|AB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若向量$\overrightarrow{a}$=(3,m),$\overrightarrow{b}$=(2,-1),$\overrightarrow{a}$•$\overrightarrow{b}$=0,则实数m的值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.某几何体的三视图如图所示,则其体积为(  )
A.4B.8C.$\frac{4}{3}$D.$\frac{8}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在等差数列{an}中,若a4+a6+a8+a10=80,则a1+a13的值为(  )
A.20B.40C.60D.80

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知$\overrightarrow a=(2cosx,2sinx)$,$\overrightarrow b=(sin(x-\frac{π}{6}),cos(x-\frac{π}{6}))$,函数f(x)=cos<$\overrightarrow{a}$,$\overrightarrow{b}$>.
(Ⅰ)求函数f(x)零点;
(Ⅱ)若△ABC的三内角A、B、C的对边分别是a、b、c,且f(A)=1,求$\frac{b+c}{a}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数$f(x)=sinx(cosx-\sqrt{3}sinx)$.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)求函数f(x)在x∈[0,π]上的单调递增区间.

查看答案和解析>>

同步练习册答案