精英家教网 > 高中数学 > 题目详情

【题目】请你设计一个包装盒,是边长为的正方形硬纸片(如图1所示),切去阴影部分所示的四个全等的等腰三角形,再沿虚线折起,使得四个点重合于图2中的点,正好形成一个正四棱锥形状的包装盒(如图2所示),设正四棱锥的底面边长为.

1)若要求包装盒侧面积不小于,求的取值范围;

2)若要求包装盒容积最大,试问应取何值?并求出此时包装盒的容积.

【答案】(1)(2)当时,包装盒容积最大为

【解析】

1)结合已知可建立侧面积关于的函数关系,然后由侧面积不小于,可建立关于的不等式,即可求得的取值范围;
2)先利用表示出的函数关系,结合导数可求其最大值.

1)在图1中连结交于点,设交于点,在图2中连结

因为是边长为的正方形,所以

,得

因为,即,所以.

因为

,得,所以.

答:的取值范围是.

2)因为在中,

所以

所以

,得(舍去).

列表得,

8

+

0

-

极大值

所以当时,函数取得极大值,也是最大值,

所以当时,的最大值为.

答:当时,包装盒容积最大为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知椭圆的离心率分别是椭圆的左右两个顶点,圆的半径为,过点作圆的切线,切点为,在轴的上方交椭圆于点.

(1)求直线的方程;

(2)的值;

(3)为常数,过点作两条互相垂直的直线,分别交椭圆于点,分别交圆于点,记三角形和三角的面积分别为.的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数其中a为常数,设e为自然对数的底数.

1)当时,求过切点为的切线方程;

2)若在区间上的最大值为,求a的值;

3)若不等式恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)的左右焦点分别为,点在椭圆上,且.

1)求椭圆的方程;

2)点PQ在椭圆上,O为坐标原点,且直线的斜率之积为,求证:为定值;

3)直线l过点且与椭圆交于AB两点,问在x轴上是否存在定点M,使得为常数?若存在,求出点M坐标以及此常数的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,直四棱柱的侧棱长为,底面是边长的矩形,的中点,

1)求证:平面

2)求异面直线所成的角的大小(结果用反三角函数表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义在上的函数,有下述命题:①若是奇函数,则的图象关于点对称;②函数的图象关于直线对称,则为偶函数;③若对,有,则2的一个周期;④函数的图象关于直线对称.其中正确的命题是______.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为响应绿色出行,某市在推出共享单车后,又推出新能源分时租赁汽车.其中一款新能源分时租赁汽车,每次租车收费的标准由两部分组成:根据行驶里程数按1/公里计费;行驶时间不超过分时,按/分计费;超过分时,超出部分按/分计费.已知王先生家离上班地点公里,每天租用该款汽车上、下班各一次.由于堵车、红绿灯等因素,每次路上开车花费的时间 ()是一个随机变量.现统计了次路上开车花费时间,在各时间段内的频数分布情况如下表所示:

时间(分)

频数

将各时间段发生的频率视为概率,每次路上开车花费的时间视为用车时间,范围为分.(1)写出王先生一次租车费用(元)与用车时间(分)的函数关系式;(2)若王先生一次开车时间不超过分为路段畅通”,表示3次租用新能源分时租赁汽车中路段畅通的次数,求的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足.

(1)若,求数列的通项公式;

(2)若,且数列是公比等于2的等比数列,求的值,使数列也是等比数列;

(3)若,且,数列有最大值与最小值,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

(本题满分15分)已知m1,直线

椭圆分别为椭圆的左、右焦点.

)当直线过右焦点时,求直线的方程;

)设直线与椭圆交于两点,

的重心分别为.若原点在以线段

为直径的圆内,求实数的取值范围.

查看答案和解析>>

同步练习册答案