【题目】请你设计一个包装盒,是边长为的正方形硬纸片(如图1所示),切去阴影部分所示的四个全等的等腰三角形,再沿虚线折起,使得,,,四个点重合于图2中的点,正好形成一个正四棱锥形状的包装盒(如图2所示),设正四棱锥的底面边长为.
(1)若要求包装盒侧面积不小于,求的取值范围;
(2)若要求包装盒容积最大,试问应取何值?并求出此时包装盒的容积.
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知椭圆的离心率,分别是椭圆的左右两个顶点,圆的半径为,过点作圆的切线,切点为,在轴的上方交椭圆于点.
(1)求直线的方程;
(2)求的值;
(3)设为常数,过点作两条互相垂直的直线,分别交椭圆于点,分别交圆于点,记三角形和三角的面积分别为.求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数其中a为常数,设e为自然对数的底数.
(1)当时,求过切点为的切线方程;
(2)若在区间上的最大值为,求a的值;
(3)若不等式恒成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:()的左右焦点分别为,,点在椭圆上,且.
(1)求椭圆的方程;
(2)点P,Q在椭圆上,O为坐标原点,且直线,的斜率之积为,求证:为定值;
(3)直线l过点且与椭圆交于A,B两点,问在x轴上是否存在定点M,使得为常数?若存在,求出点M坐标以及此常数的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于定义在上的函数,有下述命题:①若是奇函数,则的图象关于点对称;②函数的图象关于直线对称,则为偶函数;③若对,有,则2是的一个周期;④函数与的图象关于直线对称.其中正确的命题是______.(写出所有正确命题的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为响应绿色出行,某市在推出“共享单车”后,又推出“新能源分时租赁汽车”.其中一款新能源分时租赁汽车,每次租车收费的标准由两部分组成:①根据行驶里程数按1元/公里计费;②行驶时间不超过分时,按元/分计费;超过分时,超出部分按元/分计费.已知王先生家离上班地点公里,每天租用该款汽车上、下班各一次.由于堵车、红绿灯等因素,每次路上开车花费的时间 (分)是一个随机变量.现统计了次路上开车花费时间,在各时间段内的频数分布情况如下表所示:
时间(分) | ||||
频数 |
将各时间段发生的频率视为概率,每次路上开车花费的时间视为用车时间,范围为分.(1)写出王先生一次租车费用(元)与用车时间(分)的函数关系式;(2)若王先生一次开车时间不超过分为“路段畅通”,设表示3次租用新能源分时租赁汽车中“路段畅通”的次数,求的分布列和期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列与满足,.
(1)若,求数列的通项公式;
(2)若,且数列是公比等于2的等比数列,求的值,使数列也是等比数列;
(3)若,且,数列有最大值与最小值,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
(本题满分15分)已知m>1,直线,
椭圆,分别为椭圆的左、右焦点.
(Ⅰ)当直线过右焦点时,求直线的方程;
(Ⅱ)设直线与椭圆交于两点,,
的重心分别为.若原点在以线段
为直径的圆内,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com