精英家教网 > 高中数学 > 题目详情

【题目】设函数 ,则下列结论正确的是(
①f(x)的图象关于直线 对称
②f(x)的图象关于点 对称
③f(x)的图象向左平移 个单位,得到一个偶函数的图象
④f(x)的最小正周期为π,且在 上为增函数.
A.③
B.①③
C.②④
D.①③④

【答案】A
【解析】解:①∵2× + =π,x=π不是正弦函数的对称轴,故①错误;
②∵2× + = ,( ,0)不是正弦函数的对称中心,故②错误;
③f(x)的图象向左平移 个单位,得到y=sin[2(x+ )+ ]=sin(2x+ )=cos2x,y=cos2x为偶函数,故③正确;
④由x∈ ,得2x+ ∈[ ],∵[ ]不是正弦函数的单调递增区间,故④错误;
故选A
【考点精析】解答此题的关键在于理解正弦函数的单调性的相关知识,掌握正弦函数的单调性:在上是增函数;在上是减函数,以及对正弦函数的对称性的理解,了解正弦函数的对称性:对称中心;对称轴

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷“与性别有关?

非体育迷

体育迷

合计

10

55

合计

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 的两条渐近线分别为l1 , l2 , 经过右焦点F垂直于l1的直线分别交l1 , l2 于 A,B 两点.若| |,| |,| |成等差数列,且 反向,则该双曲线的离心率为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】C.[选修4-4:坐标系与参数方程]
在平面直角坐标系 中,已知直线 (l为参数)与曲线 为参数)相交于 两点,求线段 的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(3,﹣1),| |= =﹣5, =x +(1﹣x)
(Ⅰ)若 ,求实数x的值;
(Ⅱ)当| |取最小值时,求 的夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆O1:(x﹣2)2+y2=16和圆O2:x2+y2=r2(0<r<2),动圆M与圆O1、圆O2都相切,切圆圆心M的轨迹为两个椭圆,这两个椭圆的离心率分别为e1 , e2(e1>e2),则e1+2e2的最小值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,则输出的结果为(

A.4
B.9
C.7
D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x﹣1)ex+ax2有两个零点. (Ⅰ)求a的取值范围;
(Ⅱ)设x1 , x2是f(x)的两个零点,证明x1+x2<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xe2x﹣lnx﹣ax.
(1)当a=0时,求函数f(x)在[ ,1]上的最小值;
(2)若x>0,不等式f(x)≥1恒成立,求a的取值范围;
(3)若x>0,不等式f( )﹣1≥ e + 恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案