A. | (-∞,-8]∪[0,+∞) | B. | (-∞,-4) | C. | [-8,-4) | D. | (-∞,-8] |
分析 令3x=t>0,由条件可得a=$\frac{{t}^{2}+4t+4}{-t}=-4-(t+\frac{4}{t})$,利用基本不等式和不等式的性质求得实数a的取值范围.
解答 解:令3x=t>0,则关于x的方程9x+(4+a)•3x+4=0 即 t2+(4+a)t+4=0 有正实数解.
故a=$\frac{{t}^{2}+4t+4}{-t}=-4-(t+\frac{4}{t})$,
由基本不等式可得:t+$\frac{4}{t}$≥4,当且仅当t=$\frac{4}{t}$时,等号成立,
∴-(t+$\frac{4}{t}$)≤-4,即-4-(t+$\frac{4}{t}$)≤-8,
∴a≤-8,
∴a的取值范围是(-∞,-8].
故选:D.
点评 本题考查根的存在性及根的个数判断,考查利用基本不等式求最值问题,同时考查转化思想和换元法,属中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 圆锥的顶点与底面圆周上的任意一点的连线都是母线 | |
B. | 以三角形的一条边所在直线为旋转轴,其余两边绕旋转轴旋转形成的曲面所围成的几何体叫圆锥 | |
C. | 棱锥的侧棱长与底面多边形的边长都相等,则该棱锥可能是六棱锥 | |
D. | 各个面都是三角形的几何体是三棱锥 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com