精英家教网 > 高中数学 > 题目详情
17.实系数一元二次方程ax2+bx+c=0,则“ac<0”是“该方程有实数根”的充分不必要条件(在“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”中选择一个合适的填写).

分析 根据充分必要条件的定义分别判断其充分性和必要性即可.

解答 解:对于实系数一元二次方程ax2+bx+c=0,
△=b2-4ac,
若“ac<0”,则△>0,“该方程有实数根”,是充分条件,
若该方程有实数根,△≥0,则推不出ac<0,不是必要条件,
故答案为:充分不必要.

点评 本题考查了充分必要条件,根的判别式问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知定义在R上的函数f(x)=m-$\frac{2}{{{5^x}+1}}$
(1)判断并证明函数f(x)的单调性;
(2)若f(x)是奇函数,求m的值;
(3)若f(x)的值域为D,且D⊆[-3,1],求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设数列{an}的前n项和Sn=n2,则a9的值为(  )
A.15B.17C.49D.64

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个焦点分别为F1,F2,P为椭圆上一点,且∠F1PF2=120°,则椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率的取值范围为[$\frac{\sqrt{3}}{2}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设集合U={0,1,2,3},A={x|x2-x=0},则∁UA={2,3}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,角A、B、C所对应的边分别是a、b、c.
(1)若sin(A+$\frac{π}{4}$)=$\sqrt{2}sinA$,求A的值;
(2)若cosA=$\frac{1}{2}$,sinB+sinC=2sinA,试判断△ABC的形状,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.曲线f(x)=$\frac{x}{{x}^{2}+1}$在点(1,f(1))处的切线方程是(  )
A.x=1B.y=$\frac{1}{2}$C.x+y=1D.x-y=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在等腰梯形ABCD中,AB∥CD,AD=DC=a,∠ABC=60°,平面ACEF⊥平面ABCD,四边形ACEF是平行四边形,点M在线段EF上.
(1)求证:BC⊥平面ACEF;
(2)当FM为何值时,AM∥平面BDE?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知△ABC的内角A,B,C所对的边分别为a,b,c,且满足bsin(A+B)-$\sqrt{3}$ccosB=0.
(1)求B;
(2)若b=$\sqrt{7}$,c=2,求△ABC的面积.

查看答案和解析>>

同步练习册答案