12£®ÒÑÖª¶àÃæÌåABCDEFÈçͼËùʾ£¬ÆäÖÐABCDΪ¾ØÐΣ¬¡÷DAEΪµÈÑüµÈÑüÈý½ÇÐΣ¬DA¡ÍAE£¬ËıßÐÎAEFBΪÌÝÐΣ¬ÇÒAE¡ÎBF£¬¡ÏABF=90¡ã£¬AB=BF=2AE=2£®
£¨1£©ÈôGΪÏ߶ÎDFµÄÖе㣬ÇóÖ¤£ºEG¡ÎƽÃæABCD£»
£¨2£©Ï߶ÎDFÉÏÊÇ·ñ´æÔÚÒ»µãN£¬Ê¹µÃÖ±ÏßBNÓëƽÃæFCDËù³É½ÇµÄÓàÏÒÖµµÈÓÚ$\frac{{\sqrt{21}}}{5}$£¿Èô´æÔÚ£¬ÇëÖ¸³öµãNµÄλÖã»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÒÔBΪԭµã£¬BA£¬BF£¬BC·Ö±ðΪxÖᣬyÖᣬzÖáÕý·½Ïò£¬½¨Á¢ÈçͼËùʾµÄ¿Õ¼äÖ±½Ç×ø±êϵ£¬Çó³öƽÃæABCDµÄÒ»¸ö·¨ÏòÁ¿£¬Í¨¹ý$\overrightarrow{EG}•\overrightarrow n=£¨-1£¬0£¬\frac{1}{2}£©•£¨0£¬1£¬0£©=0$£¬ÍƳö$\overrightarrow{EG}¡Í\overrightarrow n$£¬¼´¿ÉÖ¤Ã÷EG¡ÎƽÃæABCD£®
£¨2£©µ±µãNÓëµãDÖغÏʱ£¬Ö±ÏßBNÓëƽÃæFCDËù³É½ÇµÄÓàÏÒÖµµÈÓÚ$\frac{{\sqrt{21}}}{5}$£®ÀíÓÉÈçÏ£ºÖ±ÏßBNÓëƽÃæFCDËù³É½ÇµÄÓàÏÒֵΪ$\frac{{\sqrt{21}}}{5}$£¬¼´Ö±ÏßBNÓëƽÃæFCDËù³É½ÇµÄÕýÏÒֵΪ$\frac{2}{5}$£¬Çó³öƽÃæFCDµÄ·¨ÏòÁ¿£¬ÉèÏ߶ÎFDÉÏ´æÔÚÒ»µãN£¬Ê¹µÃÖ±ÏßBNÓëƽÃæFCDËù³É½ÇµÄÕýÏÒÖµµÈÓÚ$\frac{2}{5}$£¬Éè$\overrightarrow{FN}=¦Ë\overrightarrow{FD}£¨0¡Ü¦Ë¡Ü1£©$£¬Í¨¹ýÏòÁ¿µÄÊýÁ¿»ý£¬×ª»¯Çó½â¦Ë£¬ÍƳöµ±NµãÓëDµãÖغÏʱ£¬Ö±ÏßBNÓëƽÃæFCDËù³É½ÇµÄÓàÏÒֵΪ$\frac{{\sqrt{21}}}{5}$£®

½â´ð ½â£º£¨1£©Ö¤Ã÷£ºÒòΪDA¡ÍAE£¬DA¡ÍAB£¬AB¡ÉAE=A£¬¹ÊDA¡ÍƽÃæABFE£¬
¹ÊCB¡ÍƽÃæABFE£¬ÒÔBΪԭµã£¬BA£¬BF£¬BC·Ö±ðΪxÖᣬyÖᣬzÖáÕý·½Ïò£¬
½¨Á¢ÈçͼËùʾµÄ¿Õ¼äÖ±½Ç×ø±êϵ£¬ÔòF£¨0£¬2£¬0£©£¬D£¨2£¬0£¬1£©£¬$G£¨1£¬1£¬\frac{1}{2}£©$£¬E£¨2£¬1£¬0£©£¬C£¨0£¬0£¬1£©£¬ËùÒÔ$\overrightarrow{EG}=£¨-1£¬0£¬\frac{1}{2}£©$£¬Ò×֪ƽÃæABCDµÄÒ»¸ö·¨ÏòÁ¿$\overrightarrow n=£¨0£¬1£¬0£©$£¬ËùÒÔ$\overrightarrow{EG}•\overrightarrow n=£¨-1£¬0£¬\frac{1}{2}£©•£¨0£¬1£¬0£©=0$£¬ËùÒÔ$\overrightarrow{EG}¡Í\overrightarrow n$£¬ÓÖEG?ƽÃæABCD£¬ËùÒÔEG¡ÎƽÃæABCD£®
£¨2£©µ±µãNÓëµãDÖغÏʱ£¬Ö±ÏßBNÓëƽÃæFCDËù³É½ÇµÄÓàÏÒÖµµÈÓÚ$\frac{{\sqrt{21}}}{5}$£®ÀíÓÉÈçÏ£º
Ö±ÏßBNÓëƽÃæFCDËù³É½ÇµÄÓàÏÒֵΪ$\frac{{\sqrt{21}}}{5}$£¬¼´Ö±ÏßBNÓëƽÃæFCDËù³É½ÇµÄÕýÏÒֵΪ$\frac{2}{5}$£¬ÒòΪ$\overrightarrow{FD}=£¨2£¬-2£¬1£©£¬\overrightarrow{CD}=£¨2£¬0£¬0£©$£¬ÉèƽÃæFCDµÄ·¨ÏòÁ¿Îª$\overrightarrow{n_1}=£¨{x_1}£¬{y_1}£¬{z_1}£©$£¬
ÓÉ$\left\{\begin{array}{l}\overrightarrow{n_1}•\overrightarrow{FD}=0\\ \overrightarrow{n_1}•\overrightarrow{CD}=0\end{array}\right.$£¬µÃ$\left\{\begin{array}{l}2{x_1}-2{y_1}+{z_1}=0\\ 2{x_1}=0\end{array}\right.$£¬È¡y1=1µÃƽÃæFCDµÄÒ»¸ö·¨ÏòÁ¿$\overrightarrow{n_1}=£¨0£¬1£¬2£©$
¼ÙÉèÏ߶ÎFDÉÏ´æÔÚÒ»µãN£¬Ê¹µÃÖ±ÏßBNÓëƽÃæFCDËù³É½ÇµÄÕýÏÒÖµµÈÓÚ$\frac{2}{5}$£¬
Éè$\overrightarrow{FN}=¦Ë\overrightarrow{FD}£¨0¡Ü¦Ë¡Ü1£©$£¬Ôò$\overrightarrow{FN}=¦Ë£¨2£¬-2£¬1£©=£¨2¦Ë£¬-2¦Ë£¬¦Ë£©$£¬$\overrightarrow{BN}=\overrightarrow{BF}+\overrightarrow{FN}=£¨2¦Ë£¬2-2¦Ë£¬¦Ë£©$£¬
ËùÒÔ$sin¦Á=cos£¼\overrightarrow{BN}£¬\overrightarrow{n_1}£¾=\frac{{\overrightarrow{|BN}•\overrightarrow{n_1}|}}{{|\overrightarrow{BN}||\overrightarrow{n_1}|}}=\frac{2}{{\sqrt{5}•\sqrt{{{£¨2¦Ë£©}^2}+{{£¨2-2¦Ë£©}^2}+{¦Ë^2}}}}=\frac{2}{{\sqrt{5}•\sqrt{9{¦Ë^2}-8¦Ë+4}}}=\frac{2}{5}$£¬
ËùÒÔ9¦Ë2-8¦Ë-1=0£¬½âµÃ¦Ë=1»ò$¦Ë=-\frac{1}{9}$£¨ÉáÈ¥£©
Òò´Ë£¬Ï߶ÎDFÉÏ´æÔÚÒ»µãN£¬µ±NµãÓëDµãÖغÏʱ£¬Ö±ÏßBNÓëƽÃæFCDËù³É½ÇµÄÓàÏÒֵΪ$\frac{{\sqrt{21}}}{5}$£®

µãÆÀ ±¾Ì⿼²é¿Õ¼äÏòÁ¿µÄÓ¦Óã¬Ö±ÏßÓëƽÃæƽÐÐÒÔ¼°Ö±ÏßÓëƽÃæËù³É½ÇµÄÇ󷨣¬¿¼²éÊýÐνáºÏÒÔ¼°×ª»¯Ë¼ÏëµÄÓ¦Óã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®1950¡«1958ÄêÎÒ¹úµÄÈË¿ÚÊý¾Ý×ÊÁÏ£º
Äê·Ý x195019511952195319541955195619571958
ÈËÊý
Y/ÍòÈË
55 19656 30057 48258 79660 26661 56062 82864 56365 994
Çó y ¹ØÓÚ x µÄ·ÇÏßÐԻع鷽³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®Ä³µØÇø¸ù¾Ý2008ÄêÖÁ2014ÄêÿÄêµÄÉú»îÀ¬»øÎÞº¦»¯´¦ÀíÁ¿y£¨µ¥Î»£ºÍò¶Ö£©µÄÊý¾Ý£¬ÓÃÏßÐԻعéÄ£ÐÍÄâºÏy¹ØÓÚtµÄ»Ø¹é·½³ÌΪ£º$\widehat{y}$=0.92+0.1t£¨t±íʾÄê·Ý´úÂ룬×Ô2008ÄêÆð£¬tµÄÈ¡Öµ·Ö±ðΪ1£¬2£¬3¡­£©£¬ÔòÏÂÁбíÊö²»ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®×Ô2008ÄêÆð£¬Ã¿ÄêµÄÉú»îÀ¬»øÎÞº¦»¯´¦ÀíÁ¿ºÍÄê·Ý´úÂëÕýÏà¹Ø
B£®×Ô2008ÄêÆð£¬Ã¿ÄêµÄÉú»îÀ¬»øÎÞº¦»¯´¦ÀíÁ¿´óÔ¼Ôö¼Ó0.10Íò¶Ö
C£®ÓÉ´ËÄ£ÐÍ¿ÉÖª2016Äê¸ÃµØÇøÉú»îÀ¬»øÎÞº¦»¯´¦ÀíÁ¿ÊÇ1.82Íò¶Ö
D£®ÓÉ´ËÄ£ÐÍÔ¤²â³ö2017Äê¸ÃµØÇøÉú»îÀ¬»øÎÞº¦»¯´¦ÀíÁ¿Ô¼Îª1.92Íò¶Ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬Ò»µ¥Î»Ô²µÄÔ²ÐĵijõʼλÖÃÔÚ£¨0£¬1£©£¬´ËʱԲÉÏÒ»µãPµÄλÖÃÔÚ£¨0£¬0£©£¬Ô²ÔÚxÖáÉÏÑØÕýÏò¹ö¶¯£®µ±Ô²¹ö¶¯µ½Ô²ÐÄλÓÚ£¨1£¬1£©Ê±£¬$\overrightarrow{OP}$µÄ×ø±êΪ£¨¡¡¡¡£©
A£®£¨1-sin1£¬1-cos1£©B£®£¨1+sin1£¬1-cos1£©C£®£¨1-sin1£¬1+cos1£©D£®£¨1+sin1£¬1+cos1£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2015-2016ѧÄê½­Î÷Ê¡ÄϲýÊиßÒ»ÏÂѧÆÚÆÚÄ©¿¼ÊÔÊýѧÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£ºÌî¿ÕÌâ

ÔÚÕý·½ÐÎÄÚÓÐÒ»ÉÈÐΣ¨¼ûͼÖÐÒõÓ°²¿·Ö£©£¬µãPËæÒâµÈ¿ÉÄÜÂäÔÚÕý·½ÐÎÄÚ£¬ÔòÕâµãÂäÔÚÉÈÐÎÍ⣬ÇÒÔÚÕý·½ÐÎÄڵĸÅÂÊΪ________£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÒÑÖªÊýÁÐ{an}µÄÇ°ÏîºÍΪan+2=an+1-an£¬ÇÒa1=2£¬a2=3£¬SnΪÊýÁÐ{an}µÄÇ°nÏîºÍ£¬ÔòS2017µÄֵΪ£¨¡¡¡¡£©
A£®0B£®2C£®5D£®6

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÔÚÇø¼ä[0£¬5]ÉÏËæ»úµØÑ¡ÔñÒ»¸öÊýt£¬Ôò·½³Ìx2+2tx+3t-2=0ÓÐÁ½¸ö¸ºÊµ¸ùµÄ¸ÅÂÊΪ$\frac{2}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÖÐÐĽÇΪ60¡ãµÄÉÈÐÎAOB£¬ËüµÄ»¡³¤Îª2¦Ð£¬ÔòÈý½ÇÐÎAOBµÄÄÚÇÐÔ²°ë¾¶Îª£¨¡¡¡¡£©
A£®2B£®$\sqrt{3}$C£®1D£®$\frac{\sqrt{3}}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªº¬ÓÐn¸öÔªËصÄÕýÕûÊý¼¯A={a1£¬a2£¬¡­£¬an}£¨a1£¼a2£¼¡­£¼an£¬n¡Ý3£©¾ßÓÐÐÔÖÊP£º¶ÔÈÎÒâ²»´óÓÚS£¨A£©£¨ÆäÖÐS£¨A£©=a1+a2+¡­+an£©µÄÕýÕûÊýk£¬´æÔÚÊý¼¯AµÄÒ»¸ö×Ó¼¯£¬Ê¹µÃ¸Ã×Ó¼¯ËùÓÐÔªËصĺ͵ÈÓÚk£®
£¨¢ñ£©Ð´³öa1£¬a2µÄÖµ£»
£¨¢ò£©Ö¤Ã÷£º¡°a1£¬a2£¬¡­£¬an³ÉµÈ²îÊýÁС±µÄ³äÒªÌõ¼þÊÇ¡°S£¨A£©=$\frac{n£¨n+1£©}{2}$¡±£»
£¨¢ó£©ÈôS£¨A£©=2017£¬Çóµ±nÈ¡×îСֵʱanµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸