精英家教网 > 高中数学 > 题目详情

【题目】如图,在等腰梯形ABCD中,AB//CD,∠ABC=BC=CD=CE=1EC⊥平面ABCDEFACP是线段EF上的动点

1)求证:平面BCE⊥平面ACEF

2)求平面PAB与平面BCE所成锐二面角的最小值

【答案】1)证明见解析;(2

【解析】

1)在梯形中可证明,可得平面,即可证明面面垂直;

2)建立空间直角坐标系,求平面的法向量,利用公式求二面角,根据二次函数求最值即可.

(1)证明:如图:

在等腰梯形ABCD中,

平面

平面

平面

平面平面

2)由(1)可建立以C点为坐标原点,分别以直线CA, CB, CEx轴,y轴,z轴的空间直角坐标系,如图,

为平面PAB的一个法向量,

,取,得

是平面BCE的一个法向量,

时,有最大值

为锐角,

的最小值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数.

1)求证:当时,

2)若函数有两个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某投资公司计划投资两种金融产品,根据市场调查与预测,产品的利润与投资量x成正比例,其关系如图1产品的利润与投资量x的算术平方根成正比例,其关系如图2;(利润与投资量单位:万元)

1)分别将两产品的利润表示为投资量的函数关系式;

2)该公司已有20万元资金,并全部投入两种产品中,问:怎样分配这20万元投资,才能使公司获得最大利润?其最大利润为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥PABCD中平面PAD⊥平面ABCDABCDABADMAD中点,PAPDADAB2CD2

1)求证:平面PMB⊥平面PAC

2)求二面角APCD的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥PABC中,PAABPA1PC3BC2sinPCAEFG分别为线段的PCPBAB中点,且BE

1)求证:ABBC

2)若M为线段BC上一点,求三棱锥MEFG的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,椭圆的长轴为短轴,且两个椭圆的离心率相同,设O为坐标原点,点AB分别在椭圆上,若,则直线AB的斜率k为( .

A.1B.-1C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 满足约束条件,若取得最大值的最优解不唯一,则实数的值为__________

【答案】

【解析】由题可知若取得最大值的最优解不唯一则必平行于可行域的某一边界,如图:要Z最大则直线与y轴的截距最大即可,当a<0时,则平行AC直线即可故a=-2,当a>0时,则直线平行AB即可,故a=1

点睛:线性规划为常考题型,解决此题务必要理解最优解个数为无数个时的条件是什么,然后根据几何关系求解即可

型】填空
束】
16

【题目】《数书九章》三斜求积术:“以小斜幂,并大斜幂,减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂,减上,余四约一,为实,一为从隅,开平方得积”.秦九韶把三角形的三条边分别称为小斜、中斜和大斜,“术”即方法.以 分别表示三角形的面积,大斜,中斜,小斜; 分别为对应的大斜,中斜,小斜上的高;则 .若在 ,根据上述公式,可以推出该三角形外接圆的半径为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线C的参数方程为:为参数).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为.

(Ⅰ)求曲线C的普通方程和直线l的直角坐标方程;

(Ⅱ)设点P的直角坐标为,若直线l与曲线C分别相交于AB两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD是棱长为2的正方形,EAD的中点,以CE为折痕把DEC折起,使点D到达点P的位置,且点P的射影O落在线段AC上.

1)求

2)求几何体PABCE的体积.

查看答案和解析>>

同步练习册答案