精英家教网 > 高中数学 > 题目详情
15.设平面内的四边形ABCD和点O,$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,$\overrightarrow{OC}$=$\overrightarrow{c}$,$\overrightarrow{OD}$=$\overrightarrow{d}$.若$\overrightarrow{a}+\overrightarrow{c}=\overrightarrow{b}+\overrightarrow{d}$.则四边形ABCD的形状是平行四边形.

分析 可由条件得到$\overrightarrow{OA}+\overrightarrow{OC}=\overrightarrow{OB}+\overrightarrow{OD}$,根据向量减法的几何意义便可得到$\overrightarrow{BA}=\overrightarrow{CD}$,从而得到BA∥CD,且BA=CD,这样即可得出四边形ABCD为平行四边形.

解答 解:由条件可得,$\overrightarrow{OA}+\overrightarrow{OC}=\overrightarrow{OB}+\overrightarrow{OD}$;
∴$\overrightarrow{OA}-\overrightarrow{OB}=\overrightarrow{OD}-\overrightarrow{OC}$;
∴$\overrightarrow{BA}=\overrightarrow{CD}$;
∴$\overrightarrow{BA}$$∥\overrightarrow{CD}$,且$|\overrightarrow{BA}|=|\overrightarrow{CD}|$;
∴BA∥CD,且BA=CD;
∴四边形ABCD为平行四边形.
故答案为:平行四边形.

点评 考查向量减法的几何意义,相等向量的概念,向量平行的概念,以及平行四边形的定义.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知点A(2,3),$\overrightarrow{AB}$=(-1,5),求点B的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.把一颗骰子投掷两次,观察出现的点数,并记第一次出现的点数为a,第二次出现的点数为b,向量$\overrightarrow{m}$=(a,b),$\overrightarrow{n}$=(1,2),则向量$\overrightarrow{m}$与向量$\overrightarrow{n}$不共线的概率是(  )
A.$\frac{1}{6}$B.$\frac{1}{12}$C.$\frac{11}{12}$D.$\frac{1}{18}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=|x+2|+|x-1|.
(1)解不等式f(x)≤4;
(2)若关于x的不等式f(x)<|2a+1|的解集是空集,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知θ∈R,且sinθ-2cosθ=$\sqrt{5}$,则tan2θ=(  )
A.$\frac{4}{3}$B.$\frac{3}{4}$C.-$\frac{3}{4}$D.-$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若二次函数f(x)=x2+mx-(m-1)的图象与x轴有两个交点,则实数m的取值范围是m>-2+2$\sqrt{2}$或m<-2-2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.不等式-3x2<0的解集为(  )
A.B.RC.(-∞,0)∪(0,+∞)D.(-$\sqrt{3}$,$\sqrt{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.定义在R上的函数f(x)对任意0<x2<x1都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<1.且函数y=f(x)的图象关于原点对称,若f(2)=2,则不等式f(x)-x>0的解集是(  )
A.(-2,0)∪(0,2)B.(-∞,-2)∪(2,+∞)C.(-∞,-2)∪(0,2)D.(-2,0)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=cosxsin(x+$\frac{π}{3}$)-$\sqrt{3}$cos2x+$\frac{{\sqrt{3}}}{4}$(x∈R)
(1)求f(x)的单调递减区间;
(2)求f(x)在区间[-$\frac{π}{4},\;\frac{π}{4}$]上的最大值和最小值并写出相应的x值.

查看答案和解析>>

同步练习册答案