精英家教网 > 高中数学 > 题目详情

【题目】某品牌电视生产厂家有AB两种型号的电视机参加了家电下乡活动,若厂家对AB两种型号的电视机的投放金额分别为pq万元,农民购买电视机获得的补贴分别为p ln q万元,已知AB两种型号的电视机的投放总额为10万元,且AB两种型号的电视机的投放金额均不低于1万元,请你制定一个投放方案,使得在这次活动中农民得到的补贴最多,并求出最大值.(精确到0.1,参考数据:ln 41.4)

【答案】厂家对AB两种型号的电视机的投放金额分别为6万元和4万元时,农民得到的补贴最多,最多补贴约1.2万元.

【解析】这是利用导数研究优化问题的典例题目,先求出补贴yB型号电视机的投放金额x万元之间的函数关系式.然后利用导数求最值即可.注意应用题一般都是单峰函数,导数等于零的点一般就是要求取最大值时x的值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某中学高三年级从甲、乙两个班级各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是83,则x+y的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:不等式(m1)x2(m1)x2>0的解集是R,命题qsin xcos x>m.如果对于任意的xR,命题p是真命题且命题q为假命题,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正四面体的顶点分别在两两垂直的三条射线上,在下列命题中,错误的是(

A. 四面体是正三棱锥 B. 直线与平面相交 C. 异面直线所成角是 D. 直线与平面所成的角的正弦值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点为极点, 轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线的参数方程为,( 为参数, ),曲线的极坐标方程为.

(1)求曲线的直角坐标方程;

(2)设直线与曲线相交于 两点,当变化时,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边长分别为a,b,c,B=
(1)若a=3,b= ,求c的值;
(2)若f(A)=sinA( cosA﹣sinA),a= ,求f(A)的最大值及此时△ABC的外接圆半径.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2013·湖北高考)四名同学根据各自的样本数据研究变量x,y之间的相关关系,并求得回归直线方程,分别得到以下四个结论:

yx负相关且=2.347x-6.423;

yx负相关且=-3.476x+5.648;

yx正相关且=5.437x+8.493;

yx正相关且=-4.326x-4.578.

其中一定不正确的结论的序号是( )

A. ①② B. ②③ C. ③④ D. ①④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】东莞市某高级中学在今年4月份安装了一批空调,关于这批空调的使用年限 (单位:年, )和所支出的维护费用(单位:万元)厂家提供的统计资料如下:

使用年限 ()

1

2

3

4

5

维护费用(万元)

6

7

7.5

8

9

请根据以上数据,用最小二乘法原理求出维护费用关于的线性回归方程

若规定当维护费用超过13.1万元时,该批空调必须报废,试根据(1)的结论求该批空调使用年限的最大值.

参考公式:最小二乘估计线性回归方程中系数计算公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四面体中,平面平面 分别为 的中点, .

(1)求证: 平面

(2)若上任一点,证明平面.

查看答案和解析>>

同步练习册答案