【题目】某品牌电视生产厂家有A,B两种型号的电视机参加了家电下乡活动,若厂家对A,B两种型号的电视机的投放金额分别为p,q万元,农民购买电视机获得的补贴分别为p, ln q万元,已知A,B两种型号的电视机的投放总额为10万元,且A,B两种型号的电视机的投放金额均不低于1万元,请你制定一个投放方案,使得在这次活动中农民得到的补贴最多,并求出最大值.(精确到0.1,参考数据:ln 4≈1.4)
科目:高中数学 来源: 题型:
【题目】某中学高三年级从甲、乙两个班级各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是83,则x+y的值为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题p:不等式(m-1)x2+(m-1)x+2>0的解集是R,命题q:sin x+cos x>m.如果对于任意的x∈R,命题p是真命题且命题q为假命题,求m的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正四面体的顶点分别在两两垂直的三条射线上,在下列命题中,错误的是( )
A. 四面体是正三棱锥 B. 直线与平面相交 C. 异面直线和所成角是 D. 直线与平面所成的角的正弦值为
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以直角坐标系的原点为极点, 轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线的参数方程为,( 为参数, ),曲线的极坐标方程为.
(1)求曲线的直角坐标方程;
(2)设直线与曲线相交于, 两点,当变化时,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C所对的边长分别为a,b,c,B= .
(1)若a=3,b= ,求c的值;
(2)若f(A)=sinA( cosA﹣sinA),a= ,求f(A)的最大值及此时△ABC的外接圆半径.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2013·湖北高考)四名同学根据各自的样本数据研究变量x,y之间的相关关系,并求得回归直线方程,分别得到以下四个结论:
①y与x负相关且=2.347x-6.423;
②y与x负相关且=-3.476x+5.648;
③y与x正相关且=5.437x+8.493;
④y与x正相关且=-4.326x-4.578.
其中一定不正确的结论的序号是( )
A. ①② B. ②③ C. ③④ D. ①④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】东莞市某高级中学在今年4月份安装了一批空调,关于这批空调的使用年限 (单位:年, )和所支出的维护费用(单位:万元)厂家提供的统计资料如下:
使用年限 (年) | 1 | 2 | 3 | 4 | 5 |
维护费用(万元) | 6 | 7 | 7.5 | 8 | 9 |
请根据以上数据,用最小二乘法原理求出维护费用关于的线性回归方程;
若规定当维护费用超过13.1万元时,该批空调必须报废,试根据(1)的结论求该批空调使用年限的最大值.
参考公式:最小二乘估计线性回归方程中系数计算公式:
, ,
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com