分析 (1)令x<0,则-x>0,由x>0时,f(x)=x2-2x,可求得f(-x),而f(x)为定义在R上的奇函数,从而可求得x<0时的解析式,最后用分段函数表示函数f(x)的解析式即可.
(2)画出图象,由图象得到单调区间.
解答 解:(1)当x<0时,则-x>0,
∴f(-x)=-(-x)2+4(-x)-3=-x2-4x-3,
∵定义在R上的奇函数f(x),
∴f(0)=0,f(-x)=-f(x),
∴f(x)=x2+4x+3,
∴f(x)=$\left\{\begin{array}{l}{-{x}^{2}+4x-3,x>0}\\{0,x=0}\\{{x}^{2}+4x+3,x<0}\end{array}\right.$,
(2)其图象为:
由图象可知,函数f(x)在(-∞,-2),(2,+∞)为减函数.
点评 本题考查奇函数的解析式的求法,考查函数的图象的作法和识别,解题时要认真审题,仔细解答,注意合理地进行等价转化.
科目:高中数学 来源: 题型:选择题
A. | (1,2) | B. | [2,+∞) | C. | [1,+∞) | D. | (0,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | m<0<n | B. | 0<n<m | C. | 0<m<n | D. | n<m<0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com