精英家教网 > 高中数学 > 题目详情
已知点P是圆x2+y2=16上的一个动点,点A(12,0)是x轴上的一定点,当点P在圆上运动时,线段PA的中点M的轨迹是什么?并判定此轨迹与圆x2+y2=16的位置关系.
分析:设出点M的坐标和点P的坐标,由中点坐标公式把P的坐标用M的坐标表示,把P的坐标代入圆的方程即可得到M的轨迹;然后利用两圆的圆心距和半径的关系进行分析即可.
解答:解:设点M的坐标为(x,y),点P的坐标为(x0,y0),
由于点A(12,0),且M是线段PA的中点,所以,
x=
x0+12
2
y=
y0+0
2
,得
x0=2x-12
y0=2y

因为点P是圆x2+y2=16上的一个动点,所以P的坐标满足方程x02+y02=16
代入整理得:(x-6)2+y2=4.
所以点M的轨迹为以(6,0)为圆心,2为半径的圆,
因为两圆的圆心距为
(6-0)2+(0-0)2
=6
,两圆的半径之和为2+4=6,
所以两圆外切.
点评:本题考查了轨迹方程,考查了圆与圆之间的关系,考查了利用代入法求曲线的轨迹方程,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点P是圆x2+y2=1上一动点,点P在y轴上的射影为Q,设满足条件
QM
QP
(λ为非零常数)的点M的轨迹为曲线C.
(1)求曲线C的方程;
(2)若存在过点N(
1
2
,0)
的直线l与曲线C相交于A、B两点,且
OA
OB
=0(O为坐标原点),求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是圆x2+y2=1上的动点,点P在y轴上的射影为Q,设满足条件
QM
=2
QP
的点M的轨迹为曲线C.
(1)求曲线C的方程;
(2)设过点N(1,0)且斜率为k1(k1≠0)的直线l被曲线C所截得的弦的中点为A,O为坐标原点,直线OA的斜率为k2,求k12+k22的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是圆x2+y2=1上任意一点,过点P作y轴的垂线,垂足为Q,点R满足
RQ
=
3
PQ
,记点R的轨迹为曲线C.
(Ⅰ)求曲线C的方程;
(Ⅱ)设A(0,1),点M、N在曲线C上,且直线AM与直线AN的斜率之积为
2
3
,求△AMN的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点P是圆x2+y2=1上的动点,点P在y轴上的射影为Q,设满足条件数学公式的点M的轨迹为曲线C.
(1)求曲线C的方程;
(2)设过点N(1,0)且斜率为k1(k1≠0)的直线l被曲线C所截得的弦的中点为A,O为坐标原点,直线OA的斜率为k2,求k12+k22的最小值.

查看答案和解析>>

科目:高中数学 来源:2011年湖北省黄冈市高考数学交流试卷3(文科)(解析版) 题型:解答题

已知点P是圆x2+y2=1上的动点,点P在y轴上的射影为Q,设满足条件的点M的轨迹为曲线C.
(1)求曲线C的方程;
(2)设过点N(1,0)且斜率为k1(k1≠0)的直线l被曲线C所截得的弦的中点为A,O为坐标原点,直线OA的斜率为k2,求k12+k22的最小值.

查看答案和解析>>

同步练习册答案