精英家教网 > 高中数学 > 题目详情

【题目】定义在(﹣1,1)上的减函数f(x)且满足对任意的实数x,y都有f(x+y)=f(x)+f(y)
(Ⅰ)判断函数f(x)的奇偶性;
(Ⅱ)解关于x的不等式f(log2x﹣1)+f(log2x)<0.

【答案】解:(1):(Ⅰ)证明:令x=y=0得,f(0)+f(0)=f(0),即f(0)=0;
令y=﹣x得,f(x)+f(﹣x)=f(0)=0;
故f(x)为奇函数;
(Ⅱ)令 ,则不等式f(log2x﹣1)+f(log2x)<0
化为不等式f(t﹣1)+f(t)<0,
即f(t﹣1)<﹣f(t)<f(﹣t),
∵f(x)在(﹣1,1)上是增函数,
∴﹣1<t﹣1<﹣t<1,
解得0<t<
,所以0<
解得,1<x<
所以,不等式的解集为(1,
【解析】(Ⅰ)令x=y=0得,f(0)+f(0)=f(0),即f(0)=0;从而可得f(x)+f(﹣x)=0;从而证明为奇函数,(Ⅱ)令 ,则不等式f(log2x﹣1)+f(log2x)<0,化为不等式f(t﹣1)+f(t)<0,即f(t﹣1)<﹣f(t)<f(﹣t),f(x)在(﹣1,1)上是增函数,转化为﹣1<t﹣1<﹣t<1求解即可,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知复数z=(2m2+3m﹣2)+(m2+m﹣2)i,(m∈R)根据下列条件,求m值.
(1)z是实数;
(2)z是虚数;
(3)z是纯虚数;
(4)z=0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M(单位:太贝克)与时间t(单位:年)满足函数关系:M(t)=M0 ,其中M0为t=0时铯137的含量.已知t=30时,铯137含量的变化率是﹣10In2(太贝克/年),则M(60)=(
A.5太贝克
B.75In2太贝克
C.150In2太贝克
D.150太贝克

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=|lgx|,且0<a<b<c时,有f(a)>f(c)>f(b),则(
A.(a﹣1)(c﹣1)>0
B.ac>1
C.ac=1
D.ac<1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数f(x)定义域中任意的x1 , x2(x1≠x2)有如下结论
1)f(x1+x2)=f(x1)f(x2
2)f(x1x2)=f(x1)+f(x2
3) >0
4)f( )<
5)f( )>
6)f(﹣x)=f(x).
当f(x)=lgx时,上述结论正确的序号为 . (注:把你认为正确的命题的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地教育研究中心为了调查该地师生对“高考使用全国统一命题的试卷”这一看法,对该市区部分师生进行调查,先将调查结果统计如下:

赞成

反对

总计

教师

120

学生

40

总计

280

120

(1)请将表格补充完整,若该地区共有教师30000人,以频率为概率,试估计该地区教师反对“高考使用全国统一命题的试卷”这一看法的人数;

(2)按照分层抽样从“反对”的人中先抽取6人,再从中随机选出3人进行深入调研,求深入调研中恰有1名学生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知条件p:-1≤x≤10,qx2-4x+4-m2≤0(m>0)不变,若 pq的必要而不充分条件,如何求实数m的取值范围?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角三角形中,若,则的取值范围是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知全集U=R,集合 ,B={x|1<x<6}
(1)求A∩UB;
(2)已知C={x|a≤x≤a+1},若A∩C=C,求实数a的取值范围.

查看答案和解析>>

同步练习册答案