精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱锥P-ABC中,PA⊥底面ABC,AC⊥BC,H为PC的中点,M为AH中点,PA=AC=2,BC=1.

(Ⅰ)求证:AH⊥平面PBC;

(Ⅱ)求PM与平面AHB成角的正弦值;

(Ⅲ)在线段PB上是否存在点N,使得MN∥平面ABC,若存在,请说明点N的位置,若不存在,请说明理由.

【答案】(Ⅰ)见证明;(Ⅱ)(Ⅲ)点N是靠近B点的四等分点

【解析】

(Ⅰ)根据线面垂直判定与性质定理进行论证,(Ⅱ)先根据条件建立空间直角坐标系,设立各点坐标,列方程组解得平面AHB的一个法向量,根据向量数量积求向量夹角,最后根据向量夹角与线面角关系得结果,(Ⅲ)先设N坐标,再根据与平面ABC的法向量的数量积为零解得结果.

(Ⅰ)证明:∵PA⊥底面ABC,

∴PA⊥BC,

又∵AC⊥BC,PA∩AC=A,

∴BC⊥平面PAC,

∵AH平面PAC,

∴BC⊥AH.

∵H为PC的中点,PA=AC,

∴AH⊥PC.

∵PC∩BC=C.

∴AH⊥平面PBC;

(Ⅱ)

由题意建立空间直角坐标系.A(0,0,0),B(1,2,0),C(0,2,0),

P(0,0,2),H(0,1,1),M

=(0,1,1),=(1,2,0),=

设平面ABH的法向量为=(x,y,z),则,取=(2,-1,1).

设PM与平面AHB成角为

则sin====

所以PM与平面AHB成角的正弦值为

(Ⅲ)假设在线段PB上存在点N,使得MN∥平面ABC.

=(1,2,-2),

==

∵MN∥平面ABC,平面ABC的法向量为=(0,0,2),

=-=0,解得

∴点N是靠近B点的四等分点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,三棱柱ABCA1B1C1的侧棱垂直于底面,且底面是边长为2的正三角形,AA13,点DEFG分别是所在棱的中点.

(Ⅰ)证明:平面BEF∥平面DA1C1

(Ⅱ)求三棱柱ABCA1B1C1夹在平面BEF和平面DA1C1之间的部分的体积.

附:台体的体积,其中SS分别是上、下底面面积,h是台体的高.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校学生会开展了一次关于垃圾分类问卷调查的实践活动,组织部分学生干部在几个大型小区随机抽取了共50名居民进行问卷调查.调查结束后,学生会对问卷结果进行了统计,并将其中一个问题是否知道垃圾分类方法(知道或不知道)的调查结果统计如下表:

年龄(岁)

频数

14

12

8

6

知道的人数

3

4

8

7

3

2

1)求上表中的的值,并补全右图所示的的频率直方图;

2)在被调查的居民中,若从年龄在的居民中各随机选取1人参加垃圾分类知识讲座,求选中的两人中仅有一人不知道垃圾分类方法的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】苹果是人们日常生活中常见的营养型水果.某地水果批发市场销售来自5个不同产地的富士苹果,各产地的包装规格相同,它们的批发价格(元/箱)和市场份额如下:

产地

批发价格

市场份额

市场份额亦称“市场占有率”.指某一产品的销售量在市场同类产品中所占比重.

(1)从该地批发市场销售的富士苹果中随机抽取一箱,求该箱苹果价格低于元的概率;

(2)按市场份额进行分层抽样,随机抽取箱富士苹果进行检验,

①从产地共抽取箱,求的值;

②从这箱苹果中随机抽取两箱进行等级检验,求两箱产地不同的概率;

(3)由于受种植规模和苹果品质的影响,预计明年产地的市场份额将增加,产地的市场份额将减少,其它产地的市场份额不变,苹果销售价格也不变(不考虑其它因素).设今年苹果的平均批发价为每箱元,明年苹果的平均批发价为每箱元,比较的大小.(只需写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019420日,重庆市实施高考改革方案,2018年秋季入学的高中一年级的学生将实行模式.“3”为全国统考科目语文、数学、外语所有学生必考;“1”为物理、历史科目中选择一科俗称“21”“2”为再选学科,考生可在化学、生物、思想政治、地理4个科目中选择两科俗称“42”,选择学科完全相同即为相同组合”.某校高一年级有三名同学甲,乙,丙根据自己喜欢的大学和专业情况均选择了物理,为了了解“42”选科情况老师找这三名同学来谈话情况如下:

甲说:我选了化学,但没有选思想政治;

乙说:我与甲有一科相同,但没有选化学和地理;

丙说:我与甲有相同的选科,与乙也有相同选科,但我们三个选的组合都不相同.则下列结论正确的是(

A.甲选了化学和地理B.丙可能选化学和思想政治

C.甲一定选地理D.丙一定选了生物和地理

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(I)求曲线在点处的切线方程;

(Ⅱ)当时,求证:函数存在极小值;

(Ⅲ)请直接写出函数的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

(1)设的极值点,求实数的值,并求的单调区间:

(2)时,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的左右焦点分别为,椭圆的离心率为为椭圆上任意一点,的最大面积为

1)求椭圆的标准方程;

2)过的直线与椭圆交于两点,连接,若的内切圆面积为,则求直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在以为顶点,母线长为的圆锥中,底面圆的直径长为2是圆所在平面内一点,且是圆的切线,连接交圆于点,连接.

1)求证:平面平面

2)若的中点,连接,当二面角的大小为时,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

同步练习册答案