【题目】已知三棱台的下底面是边长为2的正三角形,上地面是边长为1的正三角形.在下底面的射影为的重心,且.
(1)证明:平面;
(2)求直线与平面所成角的正弦值.
【答案】(1)证明见解析;(2).
【解析】
(1)利用线面垂直的判定定理及性质证明,或者建立空间直角坐标系,利用向量的数量积为0证明;
(2)运用综合法求直线与平面所成的角应先确定该平面的垂线,即可求解,或者建立空间直角坐标系,利用空间向量的夹角公式求解.
解法一:(1)证明:记的重心为,连接并延长交于点.
因为底面为正三角形,则,
又点在底面上的射影为,
所以平面,则,
因为,所以平面,
又平面,所以.
又,且,
所以平面,
因此,平面.
(2)由于为棱台,
设三侧棱延长交于一点.
因为,
则,分别为棱,的中点.
又为正的重心,
则,,.
因为平面,
则,
故在中,,
由三角形相似,得,
.
取的中点,连接,,
则∥,且,
故平面,
即即为直线与平面所成的角.
又,
且,,,
所以,,
又,所以,
即,
所以,
即直线与平面所成角的正弦值为.
解法二:以重心为原点,直线,分别为,轴建立如图所示的空间直角坐标系.
则,,,
设,则,
,.
(1)证明:由,
即得,
即,
故,
又,
所以平面.
(2)由,
得,
所以.
设平面的法向量为,
因为,,
所以有,
令,则,所以.
设直线与平面所成的角为,
则.
科目:高中数学 来源: 题型:
【题目】“2019曹娥江国际马拉松”在上虞举行,现要选派5名志愿者服务于四个不同的运动员救助点,每个救助点至少分配1人,若志愿者甲要求不到A救助点,则不同的分派方案有________种.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知0<m<2,动点M到两定点F1(﹣m,0),F2(m,0)的距离之和为4,设点M的轨迹为曲线C,若曲线C过点.
(1)求m的值以及曲线C的方程;
(2)过定点且斜率不为零的直线l与曲线C交于A,B两点.证明:以AB为直径的圆过曲线C的右顶点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在等腰梯形中,∥,,直角梯形所在的平面垂直于平面,且,.
(1)证明:平面平面;
(2)点在线段上,试确定点的位置,使平面与平面所成的二面角的余弦值为.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】四棱锥的底面ABCD是边长为a的菱形,面ABCD,,E,F分别是CD,PC的中点.
(1)求证:平面平面PAB;
(2)M是PB上的动点,EM与平面PAB所成的最大角为,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个口袋中装有大小相同的5个小球,编号分别为0,1,2,3,4,现从中随机地摸一个球,记下编号后放回,连摸3次,若摸出的3个小球的最大编号与最小编号之差为2,则共有________种不同的摸球方法(用数字作答).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数是定义在R上的奇函数,当时,,给出下列命题:
①函数有2个零点;
②的解集为;
③,,都有;
④当时,,则.
其中真命题的个数是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知的两个顶点坐标是,,的周长为,是坐标原点,点满足.
(Ⅰ)求点的轨迹的方程;
(Ⅱ)设不过原点的直线与曲线交于两点,若直线的斜率依次成等比数列,求面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com