A. | $\frac{{\sqrt{3}}}{2}$ | B. | $\frac{{\sqrt{3}}}{3}$ | C. | $\frac{{2\sqrt{3}}}{3}$ | D. | $\frac{1}{2}$ |
分析 首先要弄懂椭圆产生的原理,根据原理来解决三角形的边角关系,利用离心率公式求的结果.
解答 解:已知桌面上有一个球,半径为R,太阳光线与地面成30°角,
如图,l1和l2是两条与球相切的光线,分别切于点A和点C,分别与桌面交于点B和点D,则AC就是球的直径,BD的长就是椭圆的长轴长.过点A作AE∥BD,交l2于点E,则BD=AE.在Rt△AEC中,因为∠AEC=30°,所以AE=$\frac{2R}{sin30°}$,即a=$\frac{R}{sin30°}$,
又因为b=R,所以c=$\sqrt{(\frac{R}{sin30°})^{2}-{R}^{2}}$=$\frac{Rcos30°}{sin30°}$,
所以e=cos30°=$\frac{\sqrt{3}}{2}$.
故选:A.
点评 本题考查:椭圆产生的原理,a、b、c的关系式,求椭圆的离心率.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (1,3) | B. | (-∞,-1) | C. | (-1,3) | D. | (-1,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{20}{31}$ | B. | $\frac{3}{5}$ | C. | $\frac{8}{15}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | x1•x2>e | B. | 1<x1•x2<e | C. | 0<x1x2<$\frac{1}{e}$ | D. | $\frac{1}{e}<{x_1}{x_2}$<1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{\sqrt{5}}{5}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com