精英家教网 > 高中数学 > 题目详情
a
=(1,2),
b
=(-1,m),若
a
b
的夹角为钝角,则m的取值范围为
 
考点:数量积表示两个向量的夹角
专题:平面向量及应用
分析:
a
b
的夹角为θ,由题意可得cosθ>0,且cosθ≠1,再利用两个向量的夹角公式求得m的取值范围.
解答: 解:设
a
b
的夹角为θ,由题意可得cosθ>0,且cosθ≠1,
故有cosθ=
a
b
|
a
|•|
b
|
=
-1+2m
5
1+m2
<0,且
-1+2m
5
1+m2
≠-1,
求得m<
1
2
,且m≠-2,故m的范围为(-∞,-2)∪(-2,
1
2
),
故答案为:(-∞,-2)∪(-2,
1
2
).
点评:本题主要考查用两个向量的数量积表示两个向量的夹角,两个向量共线的性质,两个向量坐标形式的运算,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}中,a1=
4
5
,an+1=
2an,0≤an
1
2
2an-1,
1
2
an≤1
,则a2014=(  )
A、
4
5
B、
2
5
C、
1
5
D、
3
5

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法中:
①若f(x)=ax2+(2a+b)x+2(其中x∈[2a-1,a+4])是偶函数,则实数b=2;
②f(x)=
2013-x2
+
x2-2013
既是奇函数又是偶函数;
③已知f(x)是定义在R上的奇函数,若当x∈[0,+∞)时,f(x)=x(1+x),则当x∈R时,f(x)=x(1+|x|);
④已知f(x)是定义在R上的不恒为零的函数,且对任意的x,y∈R都满足f(x•y)=x•f(y)+y•f(x),则f(x)是奇函数.
其中正确说法的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=2x2-mx+3的单调增区间是[-2,+∞),则f(1)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x)=log
1
2
(x2-2ax+3)
,解答下述问题:
(1)若函数的定义域为R,求实数a的取值范围;
(2)若函数的值域为(-∞,-1],求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知U={2,3,4,5},M={3,4,5},N={2,4,5},则(  )
A、M∩N={4,3}
B、M∪N=U
C、{∁UN}∪M=U
D、(∁UM)∪N=M

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足f(x+2)=-f(x),当x∈(-1,3]时,f(x)=
1-x2
,x∈(-1,1]
t(1-|x-2|),x∈(1,3]
,其中t>0,若方程f(x)=
x
3
恰有3个不同的实数根,则t的取值范围为(  )
A、(0,
4
3
B、(
2
3
,2)
C、(
4
3
,3)
D、(
2
3
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中,在其定义域是减函数的是(  )
A、f(x)=-x2+2x+1
B、f(x)=
1
x
C、f(x)=(
1
4
)|x|
D、f(x)=ln(2-x)

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=2sin(ωx+φ)-1,x∈R,其值域为
 

查看答案和解析>>

同步练习册答案