精英家教网 > 高中数学 > 题目详情

【题目】若函数y=2sin(2x+φ)的图象过点( ,1),则它的一条对称轴方程可能是(
A.x=
B.x=
C.x=
D.x=

【答案】B
【解析】解答:函数y=2sin(2x+φ)的图象过点( ,1), 所以1=2sin(2× +φ),
所以φ=
函数的解析式为:y=2sin(2x+
显然x= ,x= ,x= 函数都得不到最值,
当x= 时,函数取得最值,
所以x= 是一条对称轴方程.
故选B.
分析:函数y=2sin(2x+φ)的图象过点( ,1),求出φ,得到函数的解析式,然后代入四个选项的x 的值,判断正误即可.
【考点精析】本题主要考查了正弦函数的对称性和函数y=Asin(ωx+φ)的图象变换的相关知识点,需要掌握正弦函数的对称性:对称中心;对称轴;图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=-x3+ax,

(1)a=3,函数f(x)的单调区间;

(2)a=12时,函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a∈R,函数f(x)=x|x﹣a|+2x.
(1)若a=2,求函数f(x)在区间[0,3]上的最大值;
(2)若a>2,写出函数f(x)的单调区间(不必证明);
(3)若存在a∈[﹣2,4],使得关于x的方程f(x)=tf(a)有三个不相等的实数解,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线x2=2py上点(2,2)处的切线经过椭圆 的两个顶点.
(1)求椭圆E的方程;
(2)过椭圆E的上顶点A的两条斜率之积为﹣4的直线与该椭圆交于B,C两点,是否存在一点D,使得直线BC恒过该点?若存在,请求出定点D的坐标;若不存在,请说明理由;
(3)在(2)的条件下,若△ABC的重心为G,当边BC的端点在椭圆E上运动时,求|GA|2+|GB|2+|GC|2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列几个命题
①方程ax2+x+1=0有且只有一个实根的充要条件是a=
②函数y= + 是偶函数,但不是奇函数;
③函数f(x)=(2x﹣3)2+1的图象是由函数y=(2x﹣5)2+1的图象向左平移1个单位得到的;
④命题“若x,y都是偶数,则x+y也是偶数”的逆命题为真命题;
⑤已知p,q是简单命题,若p∨q是真命题,则p∧q也是真命题;
⑥若函数f(x)=|ax﹣1|﹣log2(x+2),(a>1)有两个零点x1 , x2 , 则(x1+2)(x2+2)>1.
其中正确的个数是(
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上的奇函数.当x>0时,f(x)=x2﹣4x,则不等式f(x)<x的解集用区间表示为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)某工厂某种产品的年固定成本为250万元,每生产千件,需另投入成本为,当年产量不足80千件时,(万元).当年产量不小于80千件时,(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.(Ⅰ)写出年利润(万元)关于年产量(千件)的函数解析式;

(Ⅱ)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数 是偶函数,求解下列问题.
(1)求θ;
(2)将函数y=f(x)的图象先纵坐标不变,横坐标缩短为原来的 倍,再向左平移 个单位,然后向上平移1个单位得到y=g(x)的图象,若关于x的方程 有且只有两个不同的根,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中,正确的有 . (写出所有正确说法的序号) ①已知关于x的不等式mx2+mx+2>0的角集为R,则实数m的取值范围是0<m<4.
②已知等比数列{an}的前n项和为Sn , 则Sn、S2n﹣Sn、S3n﹣S2n也构成等比数列.
③已知函数 (其中a>0且a≠1)在R上单调递减,且关于x的方程 恰有两个不相等的实数解,则
④已知a>0,b>﹣1,且a+b=1,则 + 的最小值为
⑤在平面直角坐标系中,O为坐标原点,| |=| |=| |=1, + + = ,A(1,1),则 的取值范围是

查看答案和解析>>

同步练习册答案